对更高的结构和工程奇迹的需求需要具有出色强度的材料。纤维增强聚合物(FRP)材料被广泛用作外部增强剂,以增强混凝土成员的结构性能。然而,对经受扭转的加强成员的研究直到最近才引起了很大的关注。在易于地震的地区,了解扭转故障对于确保结构安全至关重要。frp(纤维增强聚合物)复合材料广泛用于加强和修复混凝土结构,因为它们的高强度重量比,耐腐蚀性,易于施用和耐用性。它们通常用作外部粘合钢筋,以提高结构构件的弯曲,剪切和轴向能力。几乎所有工程结构,包括房屋,工厂,发电厂和桥梁,在整个过程中都会经历退化或恶化。环境因素,例如钢的腐蚀,随着年龄的增长,温度变化的逐渐损失,冻融周期,重复的高强度负荷,与化学物质和盐水接触以及暴露于紫外线辐射是这些恶化的主要原因。除了这些环境因素外,任何建筑退化的重要因素是地震。需要创建有效的结构改造技术来解决此问题。因此,关注土木工程基础设施的性能至关重要。有两种解决结构改造问题的解决方案:修复/改造或拆除/重建。如果升级是一种实用的替代方案,则旧设施的总替换可能不是一个经济有效的选择,而是可能成为日益增长的财务负担。由于降解,衰老,缺乏维护,强烈的地震以及当前设计标准的变化,桥梁,建筑物和其他土木工程结构的损害造成的损害。以前,通过使用新材料卸下和更换质量或损坏的混凝土或//和钢加固,从而完成了钢筋混凝土结构(例如柱,梁和其他结构元素)的改造。然而,随着新的高级复合材料(例如纤维增强聚合物(FRP)复合材料),现在可以使用外部粘结的FRP复合材料轻松有效地加强混凝土成员
合金粘合剂 AS Rogachev a,b* , SG Vadchenko a , NA Kochetov a , D.Yu. Kovalev,ID Kovalev,AS Shchukin,AN Gryadunov,F. Barasc,O. Politano ca Merzhanov 俄罗斯科学院结构宏观动力学和材料科学研究所(ISMAN),Osipyan 院士。 8,切尔诺戈洛夫卡,莫斯科州,142432,俄罗斯 b 国立科技大学“MISIS”,列宁斯基大街。 4,莫斯科,119049,俄罗斯 c UMR 6303 CNRS-University Burgundy Franche-County,9 Av.阿兰·萨瓦里(Alain Savary)BP
Resin Developed Pre-Commercial Designation Year Developed Compostion Penacolite® B1A 1940's Resorcinol - Formaldehyde Penacolite® B16 1950's Resorcinol - Formaldehyde Penacolite® B17 1962 Resorcinol - Formaldehyde Penacolite® B18 1964 Resorcinol - Formaldehyde Penacolite® B18S RDL - 065 1976 RF Resin + RM441 Penacolite® B19S RDL - 095 1978 RF Resin + RM441 Penacolite® B20S*** RDL - 055 1988 R + Styrene + F Resin Penacolite® B21S *** RDL - 516 2004 R + Styrene + F Resin Penacolite® B22 1950's Phenol + Resorcinol + FPenaColite®untipro 100 ***良好的年份代码:“ Rajic” 2003 M-羟基二苯胺Penacolite®I868 C *** CRL -434 2009 RESORCINOL -MDI ADRAUCT -MDI ADRAUCT
可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
Sika:Sika提供的完美解决方案提供了行业中最广泛的产品,并不断开发新的粘结解决方案,以克服诸如对无关金属,塑料和复合材料的粘附,同时提供热量和耐热性的挑战。这些包括单组分,两组分和增强PUR,硅胶,STP,MMA,环氧树脂,杂种,热融化和PSA技术。产品在制造过程中具有灵活性,增加吞吐量的潜力以及行业领先的性能。
本文介绍了针对海洋维修应用开发的基于丙烯酸的粘合剂的研究。单独使用粘合剂陈化了12个月以上,并定期测试拉伸样品,以表征40°C时海水老化的影响。单独的粘合剂可在海水中塑化,在12个月后损失了大约40%的模量和强度,但干燥后很大程度上恢复了这些模量和强度。并行,在相似的衰老时间后测试了粘合的玻璃和碳纤维复合组件。在40°C的天然海水中12个月后,两者都保留了超过80%的未染色明显剪切强度。在粘结之前浸入海水长达12个月的湿复合底物的粘合键合,以确定残留键强度。湿玻璃纤维复合材料组装的断裂强度不受底物浸入长达12个月的影响,而在粘合键后,碳纤维复合组件的强度在延长的底物浸入后的强度下降至约50%。讨论了这种差异的原因。结果表明,这种粘合剂显示出良好的耐用性,应考虑海洋维修应用。
摘要:与传统注塑工艺相比,基于挤压的聚合物复合磁体的增材制造可以增加固体负载体积分数,并通过打印喷嘴产生更大的机械力。约 63 vol% 的各向同性 NdFeB 磁体粉末与 37 vol% 的聚苯硫醚混合,并在使用大面积增材制造时制造粘结永磁体,而磁性能没有任何下降。聚苯硫醚粘结磁体的拉伸应力为 20 MPa,几乎是尼龙粘结永磁体的两倍。增材制造和表面保护树脂涂层粘结磁体满足高达 175 ◦ C 的工业稳定性标准,1000 小时内的通量损失为 2.35%。与无涂层磁体相比,它们在酸性溶液(pH = 1.35)中暴露 24 小时并在 80 ◦ C 下退火 100 小时(相对湿度为 95%)时也表现出更好的耐腐蚀行为。因此,聚苯硫醚粘合、增材制造、保护性树脂涂层粘合永磁体具有更好的热性能、机械性能和磁性。
有效地需要用能量转换器覆盖较大的表面。这是太阳能电池,也称为光伏的地方。光伏设备,首先是由法国科学家Henri Becquerel于1839年发现的,它通过产生电子对 - 在光伏材料中的孔对直接转化为电子。这些对创建了电流流,该电流遵循材料的内置势坡。太阳能电池已成为重要的替代电源,尤其是自1970年代的石油座舱以来。此外,太阳能电池是一种有希望的无碳能源,可以帮助减轻全球变暖。实现高效率太阳能转化对于使太阳能成为满足世界能源需求的可行选择至关重要。太阳能电池的能量转化效率是指电池产生的电力与电池每单位时间接收到的入射阳光能量的比率。