我们的产品包括陶瓷,固体电解和膜电容器,脉冲超级电容器,脉冲,变种器,热敏电阻,过滤器,电感器,二极管,二极管,天线,连接器,传感器和控制单元。我们的全球制造能力包括位于四大洲十七个国家 /地区的设施,使我们能够在全球范围内继续满足客户需求。
使用Tencor的HRP-250来测量轮廓。使用了来自Cabot的SS12和来自AGC的CES-333F-2.5。在将晶片粘合到粘合之前(氧化物到氧化物和面对面),将顶部晶圆的边缘修剪(10毫米),并同时抛光新的斜角。这可以防止晶片边缘在磨/变薄后突破[1]。将晶圆粘合后,将散装硅研磨到大约。20 µm。之后,通过反应性离子蚀刻(RIE)将粘合晶片的剩余硅移到硅硅基(SOI) - 底物的掩埋氧化物层(盒子)上。另一个RIE过程卸下了2 µm的盒子。之后,粘合晶片的晶圆边缘处的台阶高为3 µm。随后沉积了200 nm的氮化物层,并使用光刻和RIE步骤来构建层。此外,罪被用作固定晶片的si层的固定。必须将设备晶圆边缘的剩余步骤平面化以进行进一步的标准处理。为此,将剩余的罪硬面膜(约180 nm)用作抛光止损层。在平面化之前,将4500 nm的Pe-Teos层沉积在罪恶上。这有助于填充晶圆的边缘。在第一种抛光方法中,将氧化物抛光至残留厚度约为。用SS12泥浆在罪过的500 nm。在这里,抛光是在晶片边缘没有压力的情况下进行的。然后将晶圆用CEO 2泥浆抛光到罪。用CEO 2浆料去除氧化物对罪有很高的选择性,并且抛光在罪恶层上停止。第一种抛光方法花费的时间太长,将氧化物层抛光至500 nm的目标厚度。此外,在抛光SIO 2直到停止层后,用SS12稍微抛光了罪。最后,高度选择性的首席执行官2 -lurry用于抛光罪。结果表明,步进高度很好,但是弹药范围很高(Wafer#1)。第二种方法的抛光时间较小,并在500 nm上停在SIO 2上,而最终的抛光和首席执行官2 -slurry直至罪显示出良好的步进高度,并具有更好的罪恶晶圆范围(Wafer#2)。
摘要:结构钢和混凝土是社会基础设施建设不可或缺的材料。然而,这些材料会随着时间的推移而发生降解,从而导致钢筋腐蚀。为了解决这个问题,人们使用纤维增强聚合物 (FRP) 进行加固。在本研究中,进行了拉伸试验,以评估 FRP 应用于缆索桥结构的材料特性。这些测试旨在研究提高粘结性能的各种参数。基于不同参数的实验,如果满足以下条件,则可以实现足够的粘结性能:砂浆水 ≤ 16%(无论制造商如何);劈裂深度与钢管长度比 ≥ 75%;砂浆注入方向向上/向下;以及使用纤维板加固。此外,试验中使用的钢管(长度为 410 mm,外径为 42.7 mm)在可加工性和成本效益方面表现最佳。通过进行更精确的测试来研究材料的基本特性,有可能实现更精确的条件以实现足够的粘结性能。这将有助于提高碳纤维增强塑料电缆在电缆桥架结构中的成本效益和安全性。
Choery Bellah,Jon Lachowski,Kim,Masak Kondo,Corey O'Connor,Provinces Provinces Profisces,Barr,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,酒吧,Bar,Barr。
本文介绍了针对海洋维修应用开发的基于丙烯酸的粘合剂的研究。单独使用粘合剂陈化了12个月以上,并定期测试拉伸样品,以表征40°C时海水老化的影响。单独的粘合剂可在海水中塑化,在12个月后损失了大约40%的模量和强度,但干燥后很大程度上恢复了这些模量和强度。并行,在相似的衰老时间后测试了粘合的玻璃和碳纤维复合组件。在40°C的天然海水中12个月后,两者都保留了超过80%的未染色明显剪切强度。在粘结之前浸入海水长达12个月的湿复合底物的粘合键合,以确定残留键强度。湿玻璃纤维复合材料组装的断裂强度不受底物浸入长达12个月的影响,而在粘合键后,碳纤维复合组件的强度在延长的底物浸入后的强度下降至约50%。讨论了这种差异的原因。结果表明,这种粘合剂显示出良好的耐用性,应考虑海洋维修应用。
Wirebondinghasbeenthemostwidelyusedandflexibleform of interconnecting technology in semiconductor manufacturing [1] .Themechanicalreliabilityofwirebondsinamicroelectronic package depends to a big extent on the formation of intermetallic compounds at the interface, environmental stress cycling of the module, fatigue and bonding process itself.债券过程控制和债券质量监控一直是制造OEM的主要关注点。电线键合是一个复杂的过程,具有许多参数(例如功率输入,粘结压力,粘结时间,阶段温度,传感器配置)。对于这样的制造过程,确定主要因素及其影响对于过程优化很重要。常规传感器组件包括以一端耦合的PZT(铅 - 循环酸 - 二烷基)驱动元件,以及键合工具耦合到传感器的输出端。为了维修/更换需求,该工具在组件上螺钉固定。这是具有“蟹腿”键合工具的三维结构。螺钉固定条件(工具上的扭矩值)可能会影响包装实践中的传感器性能,但是很少有有关此
讨论 ...................................................................................................70 方法:体外研究 ......................................................................................................70 所含材料的选择 ..............................................................................................71 加工和表面处理的选择 ..............................................................................................74 测试的选择 ..............................................................................................................79 方法:系统评价 ......................................................................................................82 研究设计 ................................................................................................................83 结果 ......................................................................................................................83 表面处理 .............................................................................................................84 剪切粘结强度:表面处理如何影响粘结强度? .............................................................................................85 失效类型 .............................................................................................................86 剪切粘结强度:胶粘剂系统如何影响粘结强度? .............................................................................................87 双轴弯曲强度:表面处理如何影响弯曲强度? ................................................................
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽,而长期记录表明,光子线键合激光器的高无源稳定性具有46小时的无模式跳动操作。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。
薄膜硅锂(TFLN)已成为实现高性能芯片尺度光学系统的有前途的平台,涵盖了从光学通信到微波光子学的一系列应用。此类应用程序依赖于将多个组件集成到单个平台上。然而,尽管其中许多组件已经在TFLN平台上进行了证明,但迄今为止,该平台的主要瓶颈是存在可调,高功率和狭窄的芯片激光器的存在。在这里,我们使用光子线粘结解决了这个问题,将光学放大器与薄膜锂锂反馈电路集成在一起,并证明了扩展的腔二极管激光器,产生了78 MW的高芯片上功率,侧模式抑制较大,大于60 dB,大于43 nm的宽波长可调节性。在短时间内的激光频率稳定性显示了550 Hz的超鼻中固有线宽。长期记录表明,光子线键键激光器具有58小时的无模式操作的高无源稳定性,频率漂移仅为4.4 MHz/h。这项工作将光子线粘结验证为用于高性能在芯片激光器上的可行集成解决方案,为系统级别的升级和瓦特级输出功率打开了路径。