摘要在水基钻孔操作过程中,页岩肿胀的发生对页岩地层的稳定性构成了重大挑战。粘土层膨胀是页岩肿胀的主要原因,这是由于粘土矿物质和钻孔液成分之间的相互作用而引起的。膨胀程度由诸如粘土组成,离子交换过程,渗透压,离子强度,温度和压力等变量确定。因此,本研究探讨了各种页岩肿胀抑制剂,并精心研究了基本机制。常规抑制剂的有效性,例如氯化钾(KCL),氯化铵(NH 4 Cl)和基于胺的抑制剂。但是,重要的是要注意,这些抑制剂确实有一定的局限性。因此,目前的工作研究了一系列环保抑制剂,包括氧化石墨烯,离子液体,深层共晶溶剂,纳米颗粒,纳米复合材料和生物表面活性剂。氧化石墨烯在缓解页岩肿胀并产生广泛的,不间断的防护涂层方面具有显着的功效。与KCL相比,由1-丁基-3-甲基咪唑醛(BMIMCL)代表的离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。 此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。 此外,生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。 这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。 然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。 关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保
CRISPR/Cas9 是一种流行的基因组编辑技术。尽管被广泛使用,但人们对这种原核系统在人类中的行为知之甚少。真核 Cas9 表达的一个不良后果是脱靶 DNA 结合导致诱变。更安全地在临床上实施 CRISPR/Cas9 需要更好地了解控制 Cas9 在人类中行为的调节机制。在这里,我们报告了我们发现的 Cas9 SUMO 化和泛素化,这是首次描述的这种酶的翻译后修饰。我们发现 Cas9 上的主要 SUMO2/3 结合位点是 K848,这是 HNH 核酸酶结构域中一个关键的带正电荷的残基,已知它与靶 DNA 相互作用并导致脱靶 DNA 结合。我们的结果表明,Cas9 泛素化通过蛋白酶体降解导致稳定性降低。通过将 K848 转化为精氨酸或药理学抑制细胞的 SUMO 化来阻止 Cas9 SUMO 化可增强酶的周转率并降低向导 RNA 指导的 DNA 结合效力,这表明该位点的 SUMO 化可调节 Cas9 的稳定性和 DNA 结合。需要进行更多研究才能充分了解这些修改对 Cas9 特异性的影响。
方法和结果:使用 DNA DSB 修复分析,我们评估了特定修复途径的效率,发现 PR、GR 和 GA 降低了非同源末端连接 (NHEJ)、单链退火 (SSA) 和微同源介导的末端连接 (MMEJ) 的效率,但不降低同源重组 (HR)。我们发现 PR 部分通过与核仁蛋白核磷蛋白 (NPM1) 结合来抑制 DNA DSB 修复。NPM1 的消耗会抑制 NHEJ 和 SSA,这表明 PR 表达细胞中 NPM1 的功能丧失会导致非同源和同源定向 DNA DSB 修复途径受阻。通过删除 NPM1 亚细胞定位信号,我们发现 PR 会结合 NPM1,无论 NPM1 指向哪个细胞区室。删除已知可与其他富含精氨酸的蛋白质结合的 NPM1 酸性环基序可消除 PR 和 NPM1 结合。使用共聚焦和超分辨率免疫荧光显微镜,我们发现 RAD52(SSA 修复机制的一个组成部分)的水平相对于使用 CRISPR/Cas9 基因组编辑删除了 C9ORF72 扩增的同源对照显著增加 iPSC 神经元。对死后脑组织的 Western 分析证实,与对照相比,C9ALS/FTD 样本中的 RAD52 免疫反应性显著增加。
摘要:肌腱脑脊髓炎/慢性疲劳综合征(ME/CFS)是一种慢性,复杂的疾病,其特征是严重且经常使身体和精神疲劳失败。到目前为止,科学家还没有完全指出疾病的生物学原因,但它影响了全球数百万的人。为了更好地了解ME/CFS,我们将38个ME/CFS患者血浆中的代谢网络与24名健康对照参与者进行了比较。除了测量包括色氨酸及其代谢产物在内的靶向物质以及酪氨酸,苯丙氨酸,B族维生素和harbosoxanthine的测量外,这涉及一种未靶向的代谢组学方法。我们观察到几种代谢途径的显着改变,包括维生素B3,精氨酸 - 丙啉和天冬氨酸 - 天冬酰胺途径,在未靶向的分析中。与对照组相比,有针对性的分析表明,ME/CFS患者中3-羟基氰酸,3-羟基基硝酸,低黄嘌呤和苯丙氨酸的水平变化。这些发现表明ME/CFS患者的免疫系统反应和氧化应激的潜在改变。关键词:高分辨率质谱,肌电脑脊髓炎(ME/CFS),神经退行性疾病,代谢组学,靶向分析,未靶向分析,生物标志物
ALDH7A1 缺乏症是一种常染色体隐性癫痫性脑病,通常在出生后几周至几个月内出现。这种疾病通常对一般抗惊厥药物治疗没有反应,但对吡哆醇(维生素 B 6 的一种形式)补充剂有反应。ALDH7A1 的致病变异编码赖氨酸分解代谢途径中的 α -氨基己二酸半醛 (α-AASA) 脱氢酶,导致 α-AASA 及其环状形式 Δ 1-哌啶-6-羧酸 (P6C) 积累,并与之保持平衡(图 1)。1 P6C 与吡哆醛 5 0 -磷酸 (PLP) 形成复合物,后者是唯一一种可作为酶辅因子的 B 6 维生素单体,通过 Knoevenagel 缩合导致其失活。1 这导致生物可利用的 PLP 耗尽,而 PLP 是其作为辅因子进行各种反应所必需的,其中许多反应涉及神经递质代谢,并导致癫痫表型。尽管吡哆醇治疗对癫痫发作有反应,但长期神经认知功能障碍在高达 75% 的患者中会出现一定程度的发育迟缓,通常与早期治疗无关。2 除了补充吡哆醇外,限制赖氨酸和补充精氨酸的饮食也有助于降低 α -AASA/P6C 的神经毒性水平,但已显示出一些希望。3 ALDH7A1 还可以通过亚硫酸盐氧化酶 (SUOX) 或钼辅因子缺乏 (MoCD) 中积累亚硫酸盐来抑制,从而引起继发性 ALDH7A1 缺乏症。4-6
Stuart,美国佛罗里达州,美国佛罗里达州,2025年2月12日:调查了肌酸在健康和绩效方面的作用以及国际体育营养学会的作用的研究人员已经越来越关注政府机构试图限制饮食补充剂的销售,包括含有肌酸的饮食补充剂,包括儿童和青少年。肌酸是在人体的每个细胞中发现的一种天然存在的化合物,在细胞代谢中起着至关重要的作用。肌酸的每日营业额约为每天2 - 4克,具体取决于肌肉质量和体育锻炼水平[1,2]。每天大约一半的肌酸需求是由氨基酸(精氨酸,甘氨酸,甲氨酸)在体内合成的,并在肌肉,脑,心脏和其他组织中以游离肌酸或磷酸磷脂的形式储存[1]。剩余的每日需要维持正常的细胞和组织水平,主要来自食用肉类和鱼类。例如,一磅(16盎司)红肉和鱼含有约1 - 2克肌酸。在细胞中,肌酸变成磷酸蛋白,这是维持细胞能量可利用性至关重要的化合物,尤其是在代谢压力的条件下,例如强烈的运动,损伤或疾病期间,以及一些代谢性疾病,这些疾病适用于广泛年龄范围内的不同人群。
要描述的实验与组蛋白在核功能中的作用有关,特别强调了生物合成反应,这些反应通过引入乙酰基和甲基来改变组蛋白的结构。使用乙酸-C14和蛋氨酸 - 甲基-C'4在孤立的小牛胸腺核中研究了这些反应(参见参见参考文献1)作为前体,将它们的不合格与C14-赖氨酸和其他氨基酸的不合格进行比较,并测试普罗蛋白对不同组蛋白分数的合成的影响。将提供证据,以表明在细胞核中,组蛋白的乙酰化和甲基化很可能发生在多肽链完成后。尤其是乙酰化的组蛋白结构的这种修饰可能会影响组蛋白在体内抑制核糖核酸合成的能力。这种观点得到了以下发现的支持:当孤立的精氨酸组蛋白经过有限的乙酰化时,它们会因小牛胸腺核的DNA依赖性RNA聚合酶的RNA合成抑制剂而失去了许多有效性,因此它们的有效性很大。然而,这种修饰的组蛋白仍然是强烈的碱性蛋白质,它保留了与其得出的母体组蛋白相当的DNA的亲和力。这些发现介绍了组蛋白对核RNA的影响可能涉及的可能性不仅仅涉及对RNA合成的简单抑制,并且可能存在更微妙的机制,这些机制允许抑制和重新激活RNA沿染色体的RNA产生。在过去的几年中,对组蛋白作为染色体活性的调节剂的兴趣已大大提高,因为越来越多的实验证据已经积累了支持组蛋白的作用是抑制染色体
几种乳酸细菌(实验室)是四川麸皮生产中的双刃剑;一方面,它们对于醋的味道很重要,但另一方面,由于其产生气体的特征和耐酸性,它们会导致醋恶化。这些特征加剧了使用诸如乙酰乳杆菌的菌株(如金山氏菌)亚种的菌株来管理醋的安全生产的困难。EALEGONES Z-1。因此,有必要表征其酸耐受性的机制。这项研究的结果显示,当暴露于pH 3.0应力1小时时,Z-1的存活率为77.2%。该菌株在醋溶液中可以生存约15天,总酸总含量为4%或6%,并且通过添加10 mm的精氨酸(ARG)有效地增强了其生长。在酸性应激下,不饱和脂肪酸C18:1(n-11)的相对含量增加,细胞中积累了八个氨基酸。Meanwhile, based on a transcriptome analysis, the genes glnA , carA/B , arcA , murE/F/G , fabD/H/G , DnaK , uvrA , opuA/C , fliy , ecfA2 , dnaA and LuxS , mainly enriched in amino acid transport and metabolism, protein folding, DNA repair, and cell wall/membrane metabolism processes, were hypothesized to是Z-1中与抗酸抗性相关的基因。这项工作为进一步阐明Z-1的酸耐受性机理铺平了道路,并共享适用于醋酿造的观点。
母体营养不良会对后代的生存和健康产生短期和长期影响。作为母体和胎儿之间的中介,胎盘具有解读环境信号(如营养物质的可用性)并进行适应以支持胎儿生长发育的潜力。虽然存在这种潜力,但很明显,有时胎盘适应性未能发生,导致妊娠结局不佳。本综述将重点介绍胎盘对母体营养不良的反应,这些反应与胎盘血管化和血流动力学以及胎盘营养运输系统的变化有关,这些变化与物种有关。虽然许多现有文献描述了导致胎儿结局不佳的胎盘反应,但已经开发出新的模型,利用母体营养受限时胎儿体重的固有变化来确定导致正常体重后代的胎盘适应性。对母体营养不良的胎盘反应范围的详细分析表明,胎盘组织结构和血管发育、氨基酸和脂质运输机制以及免疫相关因素的调节发生了变化。膳食补充精氨酸等特定营养素有可能通过多种机制改善胎盘生长和功能,包括刺激细胞增殖、蛋白质合成、血管生成、血管舒张和基因调控。有必要更好地了解胎盘对环境线索的反应,以制定诊断和干预策略来改善妊娠结果。生殖 (2021) 162 R73–R83
摘要:异藻醇(IMO)的高度聚合不仅有效地促进了人体中双杆菌的生长和繁殖,而且还使其抗胃酸的快速降解具有抗性,并可以刺激胰岛素分泌。在这项研究中,我们选择了表达的右旋酶(PSDEX1711)作为研究模型,并使用自动库克Vina分子对接技术来对接IMO4,IMO5和IMO6与其使用该突变位点,然后通过其定型型氨基酸的构图和水合构图的构图进行了启用,并研究了该突变的潜在作用。发现突变酶H373A的IMO4产量显着增加至62.32%。饱和突变表明,突变酶H373R的IMO4产量升至69.81%,其相邻位点S374R IMO4产量增加到64.31%。对突变酶的酶特性的分析表明,H373R的最佳温度从30℃降低到20℃,并且在碱性条件下维持了超过70%的酶活性。双点饱和突变结果表明,突变酶H373R/N445Y IMO4产量增加到68.57%。结果表明,具有基本非极性氨基酸的373个位点(例如精氨酸和组氨酸)会影响酶的催化特性。发现为IMO4的未来销售生产和右旋酶结构的分析提供了重要的理论基础。