AI 城市挑战赛的创立秉承两个目标:(1)推动智能视频分析研究和开发的边界,以实现更智能的城市用例;(2)评估性能水平足以引起现实世界采用的任务。交通运输是适合采用该技术的一个领域。第五届 AI 城市挑战赛吸引了来自 38 个国家的 305 支参赛队伍,他们利用城市规模的真实交通数据和高质量的合成数据在五个挑战赛道上展开角逐。赛道 1 涉及基于视频的自动车辆计数,评估内容包括算法有效性和计算效率。赛道 2 涉及城市规模的车辆重新识别,使用增强合成数据大幅增加了该任务的训练集。赛道 3 解决了城市规模的多目标多摄像头车辆跟踪问题。赛道 4 解决了交通异常检测问题。赛道 5 是一条新赛道,使用自然语言描述解决车辆检索问题。评估系统显示了所有提交结果的一般排行榜,以及仅限于比赛参与规则的结果公开排行榜,其中团队不得在工作中使用外部数据。公开排行榜显示的结果更接近注释数据有限的真实情况。结果显示了人工智能在智能交通中的前景。某些任务的最新性能表明这些技术已准备好在现实世界系统中采用。
无处不在的手指运动跟踪可以在增强现实,体育分析,康复 - 医疗保健,触觉等方面进行许多令人兴奋的应用程序。本文介绍了神经蛋白,该系统显示了使用柏拉图可穿戴肌电图(EMG)传感器进行3D手指运动跟踪的可行性。EMG传感器可以通过手指激活引起的肌肉感知电势,从而提供丰富的信息,以获得细粒的手指运动感测。然而,将传感器信息转换为3D手指的姿势是微不足道的,因为来自多个手指的信号以复杂的模式在传感器处叠加。为解决这个问题,神经蛋白与机器学习架构在复发性神经网络(RNN),编码器 - 编码器网络和重新NETS上的机器学习体系结构中融合了信息,从而从噪声EMG数据中解释了3D手指运动。生成的运动模式在时间上是光滑的,并且在解剖学上是一致的。此外,要利用一种转移学习算法将一个用户的验证模型调整到具有最小培训开销的新用户。对12位用户的系统研究表明中位错误为6。24◦和90%的误差为18。33◦在跟踪3D指关节角。准确性对于传感器安装位置的自然变化以及用户的腕部位置变化是可靠的。神经蛋白是在智能手机上实施的,其处理延迟为0.101,并且高能开销。
使用核酸酶折叠的cas9融合到转录效应子分子的核酸酶,可以用CRISPR-CAS9系统(CRISPRA/CRISPRI)诱导靶向转录激活或干扰。这些技术已在癌细胞系中使用,特别是用于使用慢病毒载体的全基因组功能遗传筛选。但是,由于缺乏有效和无毒的递送方式,CRISPRA和CRISPRI尚未广泛应用于具有治疗相关性的离体培养的原代细胞。在这里,我们通过电穿孔基于RNA或核糖核蛋白(RNP)递送的CRISPRA和CRISPRI平台,并在原代细胞(包括人CD34 +血液 - 诗歌干和祖细胞和祖细胞(HSPC)和人CD3 + T细胞中显示短暂的,可编程的基因调节。我们使用来自不同细菌物种的多个SGRNA和CRISPR系统显示了多重和正交基因调制,并且我们表明CRISPRA可用于操纵HSPC的分化轨迹。这些平台构成了简单有效的手段,可以瞬时控制转录,并通过合成SGRNA轻松地采用并将其重新编程为新的靶基因。我们认为,这些技术将在工程中广泛使用用于干细胞生物学和基因功能的转录组,并且我们预计它们将被实施以开发和增强细胞疗法。
图1:中大西洋山脊系统显示较高的分辨率回声沿着船只轨道映射,并在卫星数据之间进行卫星数据解释。(Google Earth:Data Sio,NOAA,美国海军,NGA,Gebcodata ldeo-Columbia,NS,Noaalandsat/Copernicus)此EarthlearneNingIdea是一种试图模拟回声数据收集方法的试图,该方法允许科学家绘制海洋底层并解释其板块构造的板块。(本系列中的“激光任务2 - 在波浪上方”显示了卫星方法 - 第2页上的表)。海洋有多深?回声声音是一种技术,其中一种声纳使用声波来确定水深(测深),从而确定海底表面的形状(地形)。声波是从船上的仪器(换能器)上的仪器中射出的,并测量了从海底(双向时间)反射的波浪所花费的时间,并将其转换为海洋深度。这在深渊平原的深水中提供了约100米的分辨率。可以使用D.I.Y.可以在教室中模拟回声声音。激光测量(或激光测距仪) - 手持测量设备,通过将激光从设备发送到目标,并测量反射返回所需的时间,记录两个点之间的距离。这提供了涉及原则的实际证明。(它还补充了第2页的表中所引用的地球“建模海底映射”)
随着人口老龄化,轻度认知障碍 (MCI) 和痴呆症的患病率上升越来越令人担忧,因此需要一种客观、易用且经济高效的工具来促进早期发现和干预。本文研究了便携式脑电图 (EEG) 系统是否可以使用视觉异常任务来针对记忆和注意力事件相关电位 (ERP) 成分 P300 来有效测量 MCI。在这项研究中,40 名参与者被分成两组:被诊断为认知障碍的个体和年龄匹配的健康对照组。参与者完成两次典型的纸笔 MCI 评估以收集行为数据,然后进行感知 EEG 异常任务以收集大脑数据。结果表明,与健康对照组相比,MCI 组在纸笔评估中表现出行为任务表现下降,在异常任务期间大脑反应发生调节,便携式 EEG 系统显示 P300 峰值幅度下降。这些结果表明便携式脑电图能够识别 MCI 的生物标志物,并可能在诊断过程中发挥作用。这种能力可以为患者、患者家属和医生带来巨大益处,也将有助于阿尔茨海默病的研究。未来的研究可以扩展这些发现,应用寿命或疾病跨度方法来研究健康个体生命过程中的 P300 变化,并与 MCI 患者整个病程中的 P300 变化进行比较。这项研究还可以加深对 MCI 进展的了解,从而改善诊断或治疗的发展。关键词:轻度认知障碍;脑电图;痴呆症;阿尔茨海默病
随着能源消耗的增加和当今可变可再生能源的增加,必须研究不断变化的能源环境中的新可能性。用作储能的电池技术是一个有前途的概念,可用于提高供应质量并避免昂贵的网格扩展。在本文中,检查了电池储能系统(BES)对电网操作的影响。为了调查此事,在挪威Trøndelag的Lierne分配系统中安装了一个1 MW / 1 MWH电池的试验箱进行了六次测试。发现通过管理电池的主动和反应式功率进给,显示了强大的电压稳定。对于反应性功率交换尤其如此,该功率交换显示了各个不同应用程序的多个积极方面,包括减少系统损耗以及减轻快速电池充电的不良E FF ECT。还发现电池系统的积极影响可以很好地渗透到22 kV系统中,在电池6公里以内的电压加强功能降低了不到15%。在整个执行的测试中,BESS被证明是分配网络中电网加强和减少损失的强大工具。根据研究的发现,电池系统显示了大大提高网格供应质量并延长分配基础设施寿命的潜力。此外,这证明可以通过电池充电可忽略的负面影响来实现。凭借独立参与者(例如峰顶塑造者)为辅助市场提供服务的能力,同时应对本地系统挑战,贝丝表现出强大的经济和技术可行性在分配系统运营中。
可扩增和激活 T 细胞的肽疫苗已成为一种有前途的预防和治疗方法,可用于应对包括传染病和癌症在内的健康相关挑战 (Malonis、Lai 和 Vergnolle 2019)。与基于整个生物体的更传统的减毒活疫苗或基于整个蛋白质亚基的亚基疫苗相比,肽疫苗基于一小组足以诱导 T 细胞免疫反应的蛋白质片段(肽),从而能够引发更有针对性的反应,避免过敏和反应原反应 (Li et al. 2014)。肽疫苗的设计包括选择免疫原性蛋白质片段,通常称为表位 (Li et al. 2014),当将其包含在疫苗中时,可扩增表位特异性 T 细胞。机器学习的进步使我们能够预测哪些肽将由主要组织相容性复合体 (MHC) 分子呈递以供适应性免疫系统监视 (Ching 等人 2018;Reynisson 等人 2020),这可用于识别将显示哪些表位 (Sohail 等人 2021)。个体显示的表位取决于其 MHC 基因的特定等位基因,因此免疫系统显示的肽在个体之间可能存在很大差异 (Zaitouna、Kaur 和 Raghavan 2020)。因此,找到一组预测将由大部分流行人群显示的肽的工程任务
抽象目的 - 本文旨在描述无人母舰平面和感应无人机的机械方面。提出的概念系统显示了基于SAE Aero Design竞争中获得的经验来设计不同尺寸和客观系统的想法和可能的方法。设计/方法论/方法 - UAS基于SAE Aero Design竞赛设计和制造的母舰,该竞赛转换为经过改装的高耐力平台,最多可以启动六个小型船舶。描述了设计和转换母舰的过程。提出了选择和计划无人机的结构或硬件的方法。发现 - 一个关键的发现是,可以实现一组小型感应多动物的母舰平面的概念。此外,系统的模块化构建提供了适应当前现有的无人飞机以转换为所描述的母舰平面的可能性。实践含义 - 进行战斗测试并研究遇到问题。无人空中系统(UAS)概念的呈现,可用于扫描区域并创建3D地图以进行搜救任务以及农业应用。独创性/价值 - 本文描述了设计由母舰平面和传感无人机组成的UA的概念方法。本文突出了使用这种UAS获得的潜在解决方案。重点是提出一种技术和系统,该技术和系统可以在广泛且难以在到达领域中进行实时观察。
发件人:海军记录更正委员会主席 收件人:海军部长 主题:海军记录 ICO 审查 参考:(a) 第 10 章 USC § 1552 (b) 2022 年联合旅行条例 (JTR) 附件:(1) DD 表格 149 及其附件 (2) 主体的海军记录 1. 根据参考 (a) 的规定,主体(以下称为请愿人)向海军记录更正委员会(委员会)提交了附件 (1),要求更正其海军记录,以显示请愿人已获得个人采购移动 (PPM) 的报销。 2. 委员会于 2023 年 5 月 4 日审查了请愿人的错误和不公正指控,并根据其规定,确定应根据现有的记录证据采取以下指示的纠正措施。委员会审议的文件材料包括附件、请愿人海军记录的相关部分以及适用的法规、规章和政策。3. 在向委员会提出申请之前,请愿人已用尽海军部现行法律和法规规定的所有行政补救措施。委员会审查了与请愿人的错误和不公正指控有关的所有记录事实,发现如下:a. 2022 年 6 月 2 日,请愿人在驻扎期间收到正式的离职令(BUPERS 命令:1532),离职生效日期为 2022 年 7 月。请愿人选择的居住地为,离职生效日期为 2022 年 7 月 11 日。b.申请人以光荣服役身份退伍,并获得了 2014 年 2 月 12 日至 2022 年 7 月 11 日期间的现役解除或退伍证书 (DD 表格 214),以便就读平民学校。c. 2023 年 5 月 3 日,NAVSUP 舰队后勤中心通知海军记录更正委员会,审计系统显示迁移日期为 2022 年 5 月 28 日。
[Hul97a] 将情境感知定义为能够根据用户所处环境感知、解释和响应的计算机系统。 增强认知 要开发信息显示系统,必须研究信息需求,还必须确定呈现信息的最佳方式,以使系统稳健、可用和有效。人类的信息处理能力已迅速成为人机交互的限制因素。这个问题促使了一门名为增强认知(AC)[Kob06a]的新科学学科的发展。AC 的具体关注点是设计方法来检测和减轻人类信息处理的局限性,以及设计解决方案来改善人机系统上的信息交换和使用。 增强现实 根据 [Hic03a],AR 为用户提供可以在现实世界中看到的叠加信息,即它用虚拟信息补充现实世界。AR 通过向视觉、声音、嗅觉或触觉等感官添加信息来改善对自然世界的感知。 AR 是指将来自三维现实环境的信号与用户感知相结合。具体来说,它表示使用眼镜或 HMD(头戴式显示器)将虚拟 3-D 图像与用户对周围世界的自然视觉融合。通过呈现集成在用户环境中的叠加信息,AR 有可能在许多应用领域提供显著的优势。这些优势中的许多都来自于这样一个事实:通过 AR 系统显示的虚拟信号可能超出了物理可见的范围。网络中心战根据 [Dod05a],网络中心战是一种军事理论,旨在通过地理上分散但联系紧密、信息灵通的强大部队网络将信息优势转化为竞争优势。