本论文旨在设计一个可靠的立方体卫星平台,包括航空电子子系统,该子系统可以在至少六个月的使用寿命内维持高辐射环境。科学仪器对平台提出了严格的要求,以实现并保持所需的旋转速度。模拟背景是在系统工具包 (STK) 中设置的。对 FORESAIL 2 的姿态和轨道控制系统 (AOCS) 进行了权衡分析,重点关注执行器及其提供适当扭矩以完成系绳部署的能力。进行了任务设计分析,以得出立方体卫星的外形尺寸、发电能力、对空间碎片缓解 (SDM) 技术要求的遵守情况以及累积的总辐射剂量。研究发现,6U 外形尺寸更适合分配给每个子系统更多空间,同时产生足够的功率使卫星能够在所有所需模式下工作。如果立方体卫星将于 2022 年 9 月发射,则该任务符合欧洲空间标准化合作组织 (ECSS) 和国际标准化组织 (ISO) 标准。为了允许卫星组件的阈值限制为 10 克拉德,立方体卫星结构上应实施 7 毫米的屏蔽墙。设计任务的主要要求是初始化对传感器和执行器的调查。结果表明,只有推进系统才能提供部署系绳所需的角动量。缺乏磁场使得磁力矩器在所需轨道上几乎无法使用,而反作用轮则成为辅助推进装置的唯一选择。不同的分析和模拟导致最终的 AOCS 配置由五种不同的传感器(太阳传感器、磁力计、GPS、IMU 和内部传感器)组成,用于姿态确定。推进系统和反作用轮将对卫星提供必要的控制。
本书专门介绍无人水下航行器 (UUV)。众所周知,UUV 家族有两个独立的分支:遥控航行器 (ROV) 和自主水下航行器 (AUV)。每个分支都有其优点和局限性,以及特定的任务。AUV 和 ROV 之间的区别在于,AUV 采用“智能”,例如传感和自动决策。它们在“头脑”中预先定义了操作计划,使它们能够自主执行任务。ROV 由人类借助基于系绳(电缆、光纤等)的通信链路进行远程控制。然而,将 AUV 技术应用于 ROV(将其转变为“智能”ROV)正在减少这两个分支之间的差异。这本书的标题最初有“智能”一词,在我看来,它正确地揭示了 UUV 发展的趋势。因此,AUV 是本书中大多数文章的主题。
在继续之前,重要的是将 UUV 置于无人系统的更广泛背景下考虑。无人驾驶飞行器现在在许多军事行动中很常见,既可用作武器(巡航导弹),又可用作侦察平台(捕食者无人机)。无人驾驶地面车辆正在开发中,用于高风险行动,例如雷场作业和炸弹处理,以及监视。在海洋环境中,已经开发了各种无人系统,包括:拖曳系统;硬系绳设备,例如遥控车辆 (ROV);不能完全潜入水中的系统,例如无人水面车辆或半潜式车辆;以及海底爬行器。其中许多系统或车辆已经使用多年(用于深水搜索和打捞的 ROV),或处于开发的后期阶段(海军的远程扫雷系统 - RMS)。
摘要:太空一直是人类的好奇心,因此为了了解太空的无限性,许多国家都在积极地进行深入的太空研究并试图开发新技术。但是,我们对太空的积极参与在太空中产生了大量垃圾。如今,太空垃圾已成为积极从事太空研究和创新的国家面临的主要问题之一。因此,对太空垃圾的管理对于未来的太空创新至关重要。本篇综述文章重点介绍了一些机构规定的可用于清除太空垃圾的各种可能方法。本文还介绍了太空垃圾的现状以及一些空间研究机构试图开展的管理活动。这篇综述文章还总结道,太空垃圾管理行业在不久的将来有着非常大的发展前景。索引词:空间碎片管理、激光器、太空拖船、系绳、离子束牧羊器、太阳帆、网捕。
3非生物系统中的长尺度电磁量子相干性8 3.1关于Biefeld Brown效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3.1.1布朗的原始实验。。。。。。。。。。。。。。。。。。。。。。。8 3.1.2蒂姆·文图拉(Tim Ventura)的查尔斯·伯勒(Charles Buhler)采访。。。。。。。。。。。。。。。。。8 3.1.3基于TGD的效果模型。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2模型的假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.2.1 Biefeld Brown效果的模型是否适用于旋转磁系统?12 3.2.2 Biefeld-Brown效果的TGD视图摘要。。。。。。。。。。。。14 3.3生活系统与计算机之间的相互作用。。。。。。。。。。。。。。。16 3.4热圈,UAP,寿命,生命,第四层状态的空间等离子体中的外星生命。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 3.4.1浆液和生物学生命。。。。。。。。。。。。。。。。。。。。。。。。。。。18 3.4.2浆质生命是否是生物学生命的助产士?。。。。。。。。。。。20 3.4.3系绳实验。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21
一种能够长时间停留的“持久”无人机可能在哥伦拜恩提供帮助,也可能成为作战人员的救生工具。为了将这个想法变成现实,CyPhy Works 向小企业创新研究 (SBIR) 计划寻求开发资金。2009 年美国国家科学基金会颁发的初始 SBIR 第一阶段奖项后来被美国国防高级研究计划局 (DARPA) 于 2010 年“采纳”为第二阶段,从而获得了美国空军的快速创新资助奖 (RIF)。结果呢?一种口袋大小的系留无人机原型。这个概念演示器通过微丝系绳供电,使操作人员能够在危险的进入操作中保持在安全距离。
执行摘要:太空电梯是一种假设概念,用于将卫星送入环绕地球的轨道,与传统的火箭发射相比,这将大大节省成本。太空电梯的工作原理是将一个平衡物放置在太空中,该平衡物被系在地球表面,并由地球自转的离心力固定。技术挑战,特别是与系绳材料相关的挑战,阻碍了太空电梯进入设计阶段。如果未来材料科学的进步允许建造太空电梯,那么应该考虑真正的太空电梯可能产生的地缘政治影响。它独特的成本、战时效用和脆弱性意味着,应该将一个和平的国家联盟合作视为一种潜在的管理模式。
由软材料制成的仿生执行器天生具有顺从性,能够适应环境,并能够进行仿生运动;[1–4] 因此,它们是与人类互动的设备的理想选择,包括可穿戴机器人。[5–7] 目前,大多数软机器人依靠通过系绳输送的加压流体,需要硬件(例如泵和阀门)来供应流体并控制其流量。这种硬件通常很重、噪音大、体积大,[1,2] 阻碍了轻便便携的可穿戴设备的实现,尤其是对于需要多个执行器阵列的应用,因为阀门和气动管路的数量与执行器的数量成比例。这可能对需要多个受控执行器的软机器人设备的开发构成挑战,例如可穿戴机器人用于协助多自由度肢体运动以进行辅助 [7] 或康复 [6] 或主动压力调节装置用于预防压疮或机械疗法应用。[8]
摘要:由于记录技术的限制,神经接口通常只能同时关注运动神经元系统中的一两个位点,从而限制了该系统的观察和发现范围。在此,我们构建了一个具有各种电极的系统,能够记录来自自由运动动物的皮层、脊髓、周围神经和肌肉的大量电生理信号。该系统将可调节微阵列、浮动微阵列和微线集成到无线发射器上的商用连接器和袖口电极上。为了说明该系统的多功能性,我们研究了其在啮齿动物在系绳跑步机上行走、不受束缚的轮子跑步和野外探索过程中的行为表现。结果表明,该系统稳定且适用于多种行为条件,并且可以提供数据来支持以前无法获得的神经损伤、康复、脑启发计算和基础神经科学研究。
严格控制纳米粒子与生物系统相互作用的选择性对于靶向疗法的开发至关重要。然而,可调参数数量众多,如果没有指导原则,很难确定最佳设计的“最佳点”。在这里,我们将超选择性理论与软物质物理学结合成一个统一的理论框架,并以血脑屏障细胞为目标证明了它的有效性。我们将我们的方法应用于用靶向配体功能化的聚合物囊泡,以确定在粒径、刷长和密度以及系绳长度、亲和力和配体数量方面最具选择性的参数组合。我们表明,将多价相互作用组合成多路复用系统使相互作用成为细胞表型的函数,即表达哪些受体。因此,我们提出设计一种“条形码”靶向方法,可以根据独特的细胞群进行量身定制,从而实现个性化治疗。