由于其出色的可见光吸收和高化学稳定性,甲状腺素钙钛矿硫化物硫化锆(BAZRS 3)在过去几年中引起了极大的关注,这是杂交卤化物钙钛矿的潜在替代方法。但是,BAZR的高处理温度在1000以上的3层薄膜严重限制了其用于设备应用的潜力。在此,我们通过更改化学反应途径在低至500℃的温度下报告了BAZRS 3薄膜的合成。通过X射线衍射和拉曼光谱镜证实了单相3薄膜。原子力显微镜和扫描电子显微镜表明,随着退火温度的降低,结晶尺寸和表面粗糙度始终降低。较低的温度进一步消除了与高温加工有关的硫空位和碳污染。能够在较低温度下合成甲状腺素蛋白酶钙钛矿薄膜消除其设备制造的主要障碍。光电检测器显示快速响应,ON/OFF比率为80。制造的田间效应晶体管的电子和孔迁移率分别为16.8 cm 2 /vs和2.6 cm 2 /vs。
1化学,双毛,药物和科学的问题,墨西哥大学,宫殿,宫殿,大学策略,98168,意大利墨西岛; raneate@unime.it(r.o.); illustry_adornate@hotmail.it(i.a.)2个Bimidian科学和临床,生化科学,Fireze大学,50,50134 Phydrals,50134 Phydrals,意大利; palo.paly@unifin); maxture.gnoves@student.it.it(m.g。); i.donsi2@students.it(I.N。)3比萨大学生物学系,PISA大学,通过S. Zeno,51,56123 Pisa,意大利; marry.car.it@unipip.it(m.c。); antonella.dcoss@unipi.it(a.d.c.); suck.emoscus@unipip.it(r.m.)4分子设计实验室,柏林自由大学的制药机构,科尼吉尼 - 卢塞斯特。2 + 4,14195柏林,耶利曼尼; gockeyy@zedat.fly.fly.destep(T.N.N。); Alexander.nass@stanson.no(N.N。); gerhard.wolber@fu-berlin.s(G.W。)*对应:souse@unime.it;称呼。: +39-090-67664646
修改,例如疾病突变建模或体细胞基因治疗中突变的校正。为了加强精确的基因编辑,需要工具或干预措施使 DSB 修复途径选择偏向 HDR,并通过将 DNA 修复模板靶向递送到 DSB 来促进 HDR 处理。特别是修复模板的可用性可能是 HDR 的限速因素。以前用于靶向递送修复模板的方法使用 Cas9 融合蛋白,其结构域与功能基团结合,该功能基团被掺入合成寡核苷酸或 PCR 片段中作为供体模板,并作为组合的 Cas9-sgRNA-供体复合物递送到细胞中 [3-5]。然而,目前尚不清楚修复模板分子与 Cas9 核酸酶的连接是否是共递送的最有效方式,因为模板在 DSB 修复的后续步骤中是必需的。以前促进 DSB 修复途径选择的方法有利于
摘要:目的:胃癌是最常见的恶性肿瘤之一,也是最常见的癌症相关致命疾病之一。化疗是晚期胃癌的主要治疗方法,化疗的疗效直接影响晚期胃癌的治疗。肿瘤细胞耐药是导致化疗失败的重要原因之一。以往研究表明,维拉帕米(VER)可以通过抑制P-糖蛋白(P-gp)来逆转耐药,而P-糖蛋白是VER的主要靶点之一。本研究旨在探讨葡萄糖神经酰胺合酶(GCS)在VER逆转胃癌阿霉素(ADM)化疗耐药中的作用。患者与方法:本研究选取4株GCS细胞株进行研究,采用CCK-8法测定胃癌细胞的IC50值,采用RT-qPCR法测定胃癌细胞中候选基因的表达水平,采用Western blot法测定胃癌细胞中候选蛋白的表达水平,采用免疫组化法检测接受VER+TACE治疗的GCS临床标本中GCS蛋白的表达,采用Annexin V-FITC/PI双染法检测胃癌细胞凋亡情况。结果:发现GCS基因表达水平的变化能够影响ADM+VER对细胞凋亡的影响,探讨GCS基因在逆转胃癌细胞对ADM化疗耐药中的作用及其机制。结论:在今后的研究中,我们将进一步探讨GCS影响胃癌耐药的机制及相关信号转导通路。
以CRISPR-Cas9为代表的基因组编辑技术已广泛应用于基因功能分析、基因治疗、作物改良等多个生物领域。然而面对真核生物基因组的复杂性,CRISPR-Cas9基因组编辑工具表现出编辑效率不稳定、在不同靶位点差异性大等问题,进一步提高CRISPR-Cas9系统在全基因组范围内的编辑效率具有重要意义。本研究在前期单转录单元基因组编辑系统(STU-SpCas9)的基础上,利用泛素相关结构域(UBA)增强Cas9蛋白的稳定性,构建了三种Cas9-UBA融合系统(SpCas9-SD01、SpCas9-SD02、SpCas9-SD03)。选取水稻OsPDS、OsDEP1和OsROC5基因的4个不同靶位点,对水稻原生质体和稳定转化水稻植株的基因组编辑效率进行评价,结果表明UBA结构域的融合不影响Cas9蛋白的切割方式,且能有效提高STU-SpCas9在靶位点的编辑效率。该新型CRISPR-Cas9-UBA系统为提高CRISPR-Cas9在植物中的基因组编辑效率提供了新的策略和工具。
泛素化是一种重要的蛋白质翻译后修饰(PTM),在控制底物降解过程中起着至关重要的作用,进而介导各种蛋白质的“数量”和“质量”,确保细胞稳态并保证生命活动。泛素化的调控是多方面的,不仅在转录和翻译后水平(磷酸化、乙酰化、甲基化等)起作用,而且在蛋白质水平(激活剂或抑制剂)起作用。当调控机制异常时,改变的生物学过程可能随后诱发严重的人类疾病,特别是各种类型的癌症。在肿瘤发生中,改变的生物学过程涉及肿瘤代谢、免疫肿瘤微环境(TME)、癌症干细胞(CSC)干性等。在肿瘤代谢方面,一些关键蛋白如RagA、mTOR、PTEN、AKT、c-Myc和P53的泛素化显著调节mTORC1、AMPK和PTEN-AKT信号通路的活性。此外,TLR、RLR和STING依赖性信号通路的泛素化也调节TME。此外,核心干细胞调节三联体(Nanog、Oct4和Sox2)以及Wnt和Hippo-YAP信号通路成员的泛素化参与维持CSC的干性。基于改变的组分,包括蛋白酶体、E3连接酶、E1、E2和去泛素化酶(DUB),许多分子靶向药物已被开发用于对抗癌症。其中,针对蛋白酶体的小分子抑制剂如硼替佐米、卡菲佐米、奥普佐米和伊沙佐米等均取得了显著的成功。此外,针对E1酶的MLN7243和MLN4924,针对E2酶的Leucettamol A和CC0651,针对E3酶的nutlin和MI‐219,以及针对DUB活性的化合物G5和F6也在临床前癌症治疗中展现出潜力。本综述总结了泛素化底物的最新进展及其在肿瘤代谢调控、TME调控和CSC干性维持方面的特殊功能,并综述了癌症的潜在治疗靶点以及靶向药物的治疗效果。
最初在杆状病毒中发现的凋亡蛋白(IAP)的抑制剂存在于从病毒到酵母再到人类的生物体中[1]。的特征是存在一到三个串联杆状病毒IAP重复序列(bir; a of。80 amino acid zinc finger motif ), there are currently eight human IAPs: neuronal apoptosis inhibitory protein (‘NAIP'), cellular IAP1, cellular IAP2, X-linked IAP (XIAP), melanoma-associated–IAP (‘ML- IAP'), IAP-like protein-2 (‘ILP-2'), survivin and BRUCE (BIR重复含泛素 - 偶联酶)(在[2]中进行了综述)。顾名思义,家庭的创始成员可以预防昆虫和哺乳动物细胞中的凋亡刺激[3,4]。在多种细胞过程中提出了进一步的IAP作用,包括对细胞分裂的控制[5],以及许多不同的信号级联反应,例如转化生长因子β激活,C-JUN N末端激酶调节和核因子κB激活已提出涉及XIAP [6-8]。尽管有上述可能性,但最容易证明的XIAP功能是直接的caspase抑制剂。在人IAP中,XIAP是胱天蛋白酶和凋亡中最有效的抑制剂。例如,几个组显示了人XIAP直接抑制胱天蛋白酶3、7和9(在[2,9]中进行了综述)。XIAP包含三个串联BIR结构域,其次是C端环(非常有趣的新基因)域。XIAP的解剖尚未揭示第一个BIR结构域的功能(BIR1)。然而,具有N端连接器的第二个BIR结构域(BIR2)是必要的,并且足以抑制密切相关的executioner caspase 3和7 [4,10,11],而第三个BIR域(BIR3)负责抑制启动器caspase 9 [10,12]。
