摘要:在这项工作中,我们提出了一种创新的方法,用于利用脑启发算法的基础设施损坏检测。所提出的解决方案利用了复发性尖峰神经网络(LSNN),这些神经网络(LSNN)正以其理论能量效率和紧凑性而出现,从而通过在传感器节点上直接处理来自低成本加速度计(MEMS)的数据来识别损害条件。我们专注于设计MEMS数据的有效编码,以优化低功率微控制器上的SNN执行。我们在配备有STM32嵌入式微控制器和数字MEMS加速度计的硬件原型传感器节点上表征和支持LED LSNN性能和能耗。我们使用了一个硬件环境和虚拟传感器在连接到物理微控制器的SPI接口上生成数据,以通过来自真实高架桥的数据流来评估系统。我们还利用了这种环境,以研究不同的传感器编码技术的影响,模仿了生物启发的传感器能够生成事件而不是加速度的传感器。获得的结果表明,在使用基于尖峰的输入编码技术时,提出的优化嵌入的LSNN(ELSNN)就可以在先进的ART中存在的幼稚LSNN算法实现而达到54%的执行时间。优化的ELSNN需要约47 kcycles,这与SPI接口的数据传输成本相当。但是,基于尖峰的编码技术需要更大的输入向量才能获得相同的分类精度,从而导致更长的预处理和传感器访问时间。总体而言,基于事件的编码技术会导致更长的执行时间(1.49×),但能耗相似。在传感器上移动此编码可以消除此限制,从而导致总体能量更稳固的监视系统。
具有高拓扑保护的光子晶体波导的实现,可以防止缺陷引起的散射。应该通过通过低损失和反射的尖锐弯曲来利用引导来设计非常紧凑的设备。在这项工作中,我们使用山谷拓扑三角谐振器耦合到输入波导,以评估在尖锐弯曲或拆分器(如拆分器之类的路由元件)之间具有相反螺旋性的螺旋拓扑边缘模式之间的转换。为此,我们首先通过数值模拟在腔角处的向后散射或在输入波导和腔之间的分离器上的螺旋转换而传播的向后散射存在。我们显示了这种过程发生的证据,尤其是在尖锐的角落,从而导致传输最小值和分裂共振,否则不存在。为了评估与此效应相关的小耦合系数,然后引入了基于散射矩阵在分裂器和谐振器的角落的精确参数化的现象学模型。通过与数值模拟进行比较,我们能够量化尖锐的弯曲和分裂器处的螺旋度转换。最后,我们使用获得的现象学参数集与基于Sierpi´nski Triangle构造的分形型腔的完整数值模拟将模型的预测与完整的数值模拟进行比较。我们表明,该协议总体上是好的,但在最小的三角形组成的腔中显示出更多的差异。我们的结果表明,即使在免于几何和结构缺陷的系统中,在拐角,尖锐的弯曲和裂缝方面,螺旋性转化也不可以忽略不计。但是,可以通过一种现象学方法来实现更简单但预测的计算,从而可以模拟超出标准数值方法的非常大的设备,这对于光子设备的设计至关重要,这些光子设备通过电磁波的拓扑传导来收集紧凑性和低损失。
海上情境意识(MSA)长期以来一直是海上交通监视和管理领域中的关键重点。船舶交通的复杂性越来越多,源于多个船舶之间的复杂多属性交互,再加上交通动态的连续发展,在达到准确的MSA方面构成了重大挑战,尤其是在复杂的港口水域中。这项研究致力于建立高级MET的那言来分区海上流量,旨在增强交通模式的解释性和加强船舶反碰撞风险管理。具体来说,最初引入了三种相互作用措施,包括冲突临界,空间距离和接近速率,以量化船舶之间时空相互作用的不同方面。随后,设计了一个半监督的光谱正则化框架,以熟练地适应多个相互作用信息和从历史分配结构中得出的先验知识。该框架有助于将区域交通分割为多个集群,其中具有相同集群的船舶表现出较高的时间稳定性,冲突连通性,空间紧凑性和收敛性运动。同时,设计了一种自适应超参数选择模型,以寻求各种情况下的最佳交通分区结果,同时还将用户偏好纳入特定交互指标。使用来自宁波 - Zhoushan端口的AIS数据进行综合实验,以彻底评估模型的功效。研究发现,从案例分析和模型比较中发现了拟议方法清楚地展示了所提出的方法成功解构区域交通复杂性,捕获高风险区域并加强战略性海上安全措施的能力。因此,该方法具有巨大的希望,可以推进海上监视系统的智能并促进海上交通管理的自动化。
量子电路优化对于提高量子计算的实用性和效率至关重要。特别是,为了满足量子电路急需的紧凑性,可逆电路的合成正在被深入研究。由于 T 门具有较高的容错实现成本 [1],因此人们投入了大量工作来最小化 T 数量 [2–9] 和 T 深度 [10–13]。相比之下,CNOT 门的实现成本较低,因为它是 Clifferd 群的一部分 [14]。尽管如此,基于 T 门的度量的使用有局限性,事实证明,电路中 CNOT 门的数量是一个不容忽视的度量,因为它会对电路的实现成本产生重大影响 [15]。除此之外,噪声中尺度量子 (NISQ) 时代的量子计算机 [16] 具有架构限制。具体而言,这些计算机中的量子比特并非以全对全的方式连接。这意味着具有 2 的元数的逻辑门(例如 CNOT 门)只能应用于某些量子比特对之间。因此,使电路符合给定架构不可避免地会导致 CNOT 计数增加 [17]。处理架构约束的一种常见方法是插入 SWAP 门来路由逻辑量子比特 [18–21]。另一种方法是执行架构感知合成 [22],这种方法通常会产生具有低得多的 CNOT 计数的电路,同时满足架构约束。这种方法通常应用于可以用高级构造(例如线性可逆函数)表示的电路子集。然后可以将这些电路组合在一起以形成完整的架构兼容量子电路 [23, 24]。此编译方案中的一个重要构建块是合成仅由 CNOT 和 RZ 门组成的电路。这些电路可以用称为相位多项式的高级构造来表示。在这项工作中,我们解决了相位多项式合成问题,并针对受限和完全连接的情况提出了有效的算法。
光学生物传感器具有直接、实时和无标记生物分子检测的巨大优势。因此,由于它们具有高特异性和灵敏度、紧凑性和成本效益,因此已广泛应用于医疗保健、食品质量控制和药物发现领域。[1,2] 表面等离子体共振 (SPR) 技术一直是终端用户中占主导地位的技术,目前在光学生物传感器市场中占有最大份额。在传统的 SPR 系统中,来自薄金膜的高度受限等离子体场用于通过可见光折射测量来监测生物识别事件(即生物受体和目标分析物结合后引起的折射率变化)。[3] 同时,中红外 (mid-IR) 光谱在研究发展中引起了广泛关注,因为它显示出对生物分析物的联合分子特异性识别和定量的有希望的机会。中红外窗口范围在 2 至 20 µ m 之间,具有分子独特的振动吸收带,可通过光吸收进行特异性探测。[4,5] 因此,中红外光谱测量可以揭示生物分析物的分子指纹,提供有关其分子成分和结构组成的信息。然而,主要的挑战仍然在于克服 µ m 级红外波长和 nm 级生物分子之间的弱光学相互作用。表面增强红外吸收 (SEIRA) 光谱法已被提出通过采用支持高度亚波长表面结合光学模式的纳米结构超表面来克服较弱的光分子相互作用。[6] 最成熟的 SEIRA 平台基于支持局部 SPR (LSPR) 的金纳米结构,已证明生物分子检测(例如蛋白质和 DNA)可将 SEIRA 信号增强 10 到 100 倍。 [7–10] 尽管最近的 SEIRA 发展获得了更好的光学灵敏度(例如,采用金属-绝缘体-金属结构的完美吸收体设计),[11,12] 但金属基超表面由于缺乏光谱选择性和相对较差的红外场限制(典型衰减长度 ≈ 10 2 d )而受到限制。[13]
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
I. 引言为了满足未来高频电子器件的需求,开发新的技术方法十分必要。在集成方面,主要要求是能够制造复杂的二维和三维微型结构以及混合电介质材料和金属。LTCC(低温共烧陶瓷)[1] 是一种可行的方法。它允许使用低温烧制陶瓷材料和高电导率金属(金、银)。但该技术存在一些局限性:用 LTCC 制造的组件是通过堆叠单条带制成的,因此限制了可实现的几何形状(2.5-D 配置而不是真正的 3-D)。盲孔、沟槽或金属壁不易制作(即使提出了接近的解决方案,例如用过孔栅栏代替金属壁)。此外,混合电介质材料极其困难。立体光刻技术(SL)在特定约束下实现了这一目标。后者包括制造复杂的 3D 组件 [2-4]。到目前为止,该技术基于一种电介质制造,尚无法在单个制造步骤中将金属和电介质材料组合在一起。喷墨打印技术的最新进展使得在一步制造中实现复杂的金属电介质结构 [5-7]。使用这种方法,我们旨在制造创新的高频元件,以获得紧凑性、性能和设计灵活性。我们必须面对的挑战之一是优化一种可以在低温(~900°C)下固化的电介质墨水,从而与银纳米颗粒墨水等高电导率金属墨水兼容。在此背景下,本文介绍了两种基于陶瓷的添加剂技术:(1)喷墨打印方法,首先对基于银纳米颗粒和低温烧制陶瓷材料墨水的多材料和多层组件进行打印测试。(2)一种专用于 RF 组件制造的基于陶瓷的 SL 技术。如图所示,喷墨打印和 SL 技术都是未来 RF 组件的替代技术的候选。II。喷墨技术 A. 喷墨打印原理 该技术基于不同材料薄层的叠加以构建 2D 或 3D 组件,使用多喷嘴压电打印头在基板上输送精确体积的墨滴(几 pL)(图 1)。
∗ 本文的早期版本题为“超越无限:通过逻辑紧凑性扩展经济理论”,以一页摘要的形式出现在第 21 届 ACM 经济与计算会议论文集上。我们感谢 David Ahn、Bob Anderson、Morgane Austern、Archishman Chakrabortyz、Chris Chambers、Yunseo Choi、Henry Cohn、Piotr Dworczak、Andrew Ellis、Tam´as Fleiner、Drew Fudenberg、Wayne Gau、Jerry Green、Joseph Halpern、Ron Holzman、Ravi Jagadeesan、M. Ali Khan、David Laibson、Rida Laraki、Bar Light、Elliot Lipnowski、Ce Liu、George Mailath、Michael Mandler、Paul Milgrom、Ankur Moitra、Yoram Moses、Juan Pereyra、Marek Pycia、Debraj Ray、John Rehbeck、Phil Reny、Joseph Root、Ariel Rubinstein、Dov Samet、Chris Shannon、Tomasz Strzalecki、Sergiy Verstyuk、Rakesh Vohra、Shing-Tung Yau、Bill Zame 以及众多研讨会观众有帮助的评论。 Gonczarowski 的部分资助来自以色列科学与人文学院的亚当斯奖学金项目;他的工作部分资助来自以色列科学院管理的 ISF 拨款 1435/14、317/17 和 1841/14;美国-以色列双边科学基金会(BSF 拨款 2014389);以及欧洲研究理事会 (ERC) 的欧盟地平线 2020 研究与创新计划(拨款编号 740282)和欧盟第七框架计划 (FP7/2007-2013)/ERC 拨款编号 337122。Kominers 非常感谢美国国家科学基金会(拨款 SES-1459912)以及哈佛大学数学科学与应用中心的 Ng 基金和经济学数学研究基金的支持。 Shorrer 得到了美国-以色列双边科学基金会 (BSF 拨款 2016015 和 2022417) 的资助。这项工作的一部分是在西蒙斯劳弗数学科学研究所 2023 年秋季市场和机制设计的数学和计算机科学项目期间进行的,该项目由美国国家科学基金会资助,拨款编号为 DMS-1928930,由阿尔弗雷德 P. 斯隆基金会资助,拨款编号为 G-2021-16778。† 哈佛大学经济学系和计算机科学系 — 电子邮件:yannai@gonch.name。Gonczarowski 的部分工作是在耶路撒冷希伯来大学、特拉维夫大学和微软研究院进行的。‡ 哈佛商学院创业管理部;哈佛大学经济学系和 CMSA;和 a16z crypto — 电子邮件:kominers@fas.harvard.edu。§ 宾夕法尼亚州立大学经济学系 — 电子邮件:shorrer@psu.edu。
毫米波和太赫兹频率的真空电子器件在现代高数据速率和宽带通信系统、高分辨率检测和成像、医学诊断、磁约束核聚变等领域发挥着重要作用。由于电子在真空介质中运动速度快,与现有的其他辐射源(如固态器件)相比,它们具有高功率、高效率以及紧凑性的优势。我们设立“高频真空电子器件”专刊的目的是加强有关这些器件的理论、设计、仿真、工艺和开发的研究信息的交流,促进它们的应用,并吸引年轻的研究人员和工程师进入这个重要领域,这是现代电子科学和信息技术的重要组成部分。真空电子射频功率器件有很多种,包括线束器件、交叉场器件和快波器件。在高达太赫兹的高频范围内,速调管、行波管、波谷振荡管和回旋管因其高功率或宽瞬时或调谐带宽而受到广泛研究。为了在毫米波和太赫兹频率下获得高质量的性能,过去十年中出现了新的技术和工艺,包括使用 MEMS 和 3D 打印的微加工、用于窗口和衰减器的新型金刚石相关材料。同时,人们还研究了新的慢波结构和谐振结构,如超结构、高阶模式操作和片状电子束,用于获得高功率;杂散抑制;并降低制造难度,特别是在高频范围内。阴极、电子枪、I/O 结构、磁聚焦系统和收集器等器件零部件的革命性技术在高频真空电子器件的发展中发挥了关键作用。本期特刊包含 15 篇论文,涵盖了广泛的主题,涉及频率范围高达 340 GHz 的高频真空设备的设计、仿真、制造和测试,以及包括回旋管、TWT 和 EIK 在内的设备,以及波束形成和限制阴极、慢波结构和模式转换器等。高频回旋管是动态核极化核磁共振 (DNP-NMR) 应用的核心设备,可显着提高医疗系统和科学研究中高场 NMR 的灵敏度和分辨率。北京大学论文[1]《330 GHz/500 MHz DNP-NMR应用的线性偏振高纯度高斯光束整形与耦合》提出了用于330 GHz/500 MHz DNP-NMR系统的波纹TE11-HE11模式转换器和三端口定向耦合器的设计与计算。模式转换器的输出模式呈现出高度
集成的光子学是一种在应用程序的各个领域,包括光学共同传感和生物传感。尤其是,片上生物感应引起了极大的兴趣,这是由于其在低成本,紧凑性和低检测极限方面的潜力。CMOS兼容的氮化硅(SIN X)目前在片上光谱中起着重要作用,是可见/近红外(MR)平台的首选材料[1]。然而,sin x在蓝色/紫外线波长下遭受高吸收损失[2]。已经努力研究了在紫外线波长的波导,但紫外线平台仍处于起步阶段。对于理想的光子平台,低损耗和单模操作对于结合芯片上多个光学组件至关重要。最近,X。Liu等[3]报道了一个单晶AIN平台。从k = 390 nm处的出色胶片质量,中等的波导损失为8 db/cm。然而,即使使用电子束光刻,大波导维度和高指数(N)值为2.2也会导致多模式引导。相反,使用原子层沉积(ALD),氧化铝(A10 X)具有较低的折射率值,高于220 nm [4]的高透明度,可以很好地控制A10 X膜的均匀性和厚度。G.N. West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。 在402 nm的波长下证明了5 dB/cm的传播损失。G.N.West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。West等。在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。在402 nm的波长下证明了5 dB/cm的传播损失。此外,它们的平台将氧化硅(Sio X)的实现为硬面膜,后来将其作为顶级层面。尽管这将有效地降低核心和覆层之间的指数对比,然后减少散射损失,但Sio X-覆层不可避免地会抑制平台的生物感应电位。在本文中,我们提出了由常规接触光刻(Karl Suss Ma6对准器)制造的空气层单模A10 X波导。在实施昂贵且耗时的步进光刻之前,该A10 X平台利用了一种高效且具有成本效益的光刻工具来制造紫外线/紫罗兰色频谱设备的研究原型。