结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
银屑病是一种慢性炎症性皮肤病,经常在同一位置复发,这表明病变皮肤细胞可能存在表观遗传学变化。在这项研究中,我们发现从银屑病皮肤病变中分离的成纤维细胞即使在培养几次后仍保留了异常表型。转录组分析显示银屑病成纤维细胞中几种基因上调,包括纤维连接蛋白的额外结构域 A 剪接变体和 ITGA4。小分子表观遗传修饰药物的表型文库筛选显示,选择性 CBP/p300 抑制剂能够挽救银屑病成纤维细胞表型,降低纤维连接蛋白的额外结构域 A 剪接变体和 ITGA4 的表达水平。在咪喹莫特诱发的银屑病样皮肤炎症小鼠模型中,使用强效 CBP/p300 阻断剂 A485 进行全身治疗可显著减少皮肤炎症、免疫细胞募集和炎症细胞因子产生。我们的研究结果表明,表观遗传重编程可能代表一种治疗和/或预防银屑病复发的新方法。
抽象的饮食纤维丰富的食物与许多健康益处有关,包括降低心血管和代谢疾病的风险。利用提供积极健康成果的潜力取决于我们对推动这些关联的基本机制的理解。本评论通过剖析了基于这些生理益处的基础的物理和化学消化过程和相互作用来解决有关基于植物的食物功能的数据和概念。饮食纤维沿胃肠道的功能转化从口服加工和胃排空的阶段到肠道消化和结肠发酵会影响其调节消化,过境和共识微生物组的能力。此分析强调了解码复杂的相互作用网络的重要性,局限性和挑战,以建立一个连贯的框架,该框架连接了特定的纤维成分的分子和宏观镜头相互作用,跨胃肠道内的多个长度尺度。需要仔细检查的一个关键领域是纤维,粘液屏障和共生微生物组之间的相互作用在考虑食物结构设计和个性化营养策略时,以实现有益的生理效果。了解特定纤维的反应,尤其是有关个体生理学的反应,将提供机会利用这些功能特征以引起特定的,症状靶向的作用或将纤维类型作为辅助疗法使用。
抽象背景木质纤维素生物量作为原料具有巨大的生化生产潜力。仍然,源自木质纤维素衍生的水解物的有效液化受到其复杂和异质组成的挑战,以及抑制性化合物的存在,例如呋喃醛。使用微生物联盟,其中两个专门的微生物相互补充可以作为提高木质纤维素生物质升级效率的潜在方法。结果本研究描述了由合成的木质纤维素水解物的同时抑制剂解毒和产生乳酸和蜡酯,并通过确定的酿酒酵母和抗酸细菌的糖含量的共培养物和囊杆菌baylyi adp1。A。Baylyi ADP1显示出存在于水解产物中的Furan醛的有效生物转化,即富含毛细血管和5-羟基甲基甲基甲基甲醛,并且没有与S. cerevisiae竞争的底物,从而强调了其作为同伴的潜力。此外,酿酒酵母的剩余碳源和副产品由A. Baylyi Adp1引向蜡酯的产生。与塞维西亚链球菌的单载体相比,与贝利a a a a a baylyi ADP1的共培养中,酿酒酵母的乳酸生产率约为1.5倍(至0.41±0.08 g/l/h)。结论显示,酵母和细菌的共培养可以改善木质纤维素层的消耗量以及乳酸从合成木质纤维素水解的生产力。关键词乳酸,共培养,排毒,acinetobacter baylyi adp1,酿酒酵母,蜡酯,木质纤维素高排毒能力和通过A. baylyi Adp1产生高价值产物的能力表明,这种菌株是共培养的潜在候选者,以提高酿酒酵母发酵的生产效率和经济学。
实施可再生能源产生的广泛方法,[1]和大规模采用电动汽车。[2]这种绿色过渡只有在开发高效且环保的储能系统时才有可能。[1-3]作为最突出和通用的能源存储系统,电池被认为是以环境和社会经济上可疑的方式存储/传递按需功率的至关重要的齿轮。[4]理想情况下,可持续的能源存储设备应提供较大的能力,具有良好的利率能力,具有较长的运行寿命,最重要的是,依赖于无毒和非关键材料。[5–7]这些严格的要求位移锂离子蝙蝠(LIB)是真正绿色电池的首选选择。[5]当前的LIB在电解质(六氟磷酸锂,碳酸盐酯)中使用有毒和易燃化学物质,以及欧盟列出的元素为关键原料(CRMS),包括钴,锂或石墨。[8,9]除了在玻利维亚,阿根廷,智利,澳大利亚和刚果民主共和国的高供应风险外,CRM的处置和随后的海洋/垃圾填埋场都严重威胁动物和 div>
金属有机框架(MOF)是最具吸引力的功能性多孔材料之一。但是,它们的加工性和处理性仍然是一个重大挑战,因为MOF通常由于其结晶性而以粉末形式出现。将MOF和纤维素底物结合到制造工程材料提供了理想的解决方案,可以扩大其作为功能材料的利用。MOF/纤维素复合材料进一步提供了MOF的显着机械性能,可调孔隙度和可访问的活性位点。在这篇综述中,我们总结了MOF/纤维素复合材料的当前最新制造路线,其特定重点是利用三维生物基于生物的纤维素支架的独特潜力。我们强调了它们作为气相和液相的吸附剂的利用,用于抗菌和蛋白质固定,化学传感器,电能量存储和其他新兴应用。此外,我们讨论了高级功能材料的MOF/纤维素复合材料领域的当前局限性和潜在的未来研究方向。
当今大多数产品都具有多个功能,但是这些功能是通过在系统中整合不同的单功能设备和/或材料来实现的。在一种单个材料中同时具有多个功能具有许多潜在的优势,例如一种可以存储能量,具有自感应或自我修复能力或任何其他身体功能的结构材料。这将带来质量和资源节省,使能源更高,因此更可持续。本文介绍了如何使用碳纤维的电气和电化学性质在高性能载荷中同时使用碳纤维来进行碳纤维的微型审查。通过该碳纤维复合材料还可以存储像锂离子电池一样的能量,用作应变传感器,具有电气控制的致动和形状,并用作能量收割机。
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
固化:– 浇铸 24 小时后,浇铸部件从模具中脱模并运输到固化罐。某些需要高强度的特殊部件(如铁路枕木)需要蒸汽固化。固化将至少进行 3 天,并在现场安装这些部件后进行进一步固化。运输和安装:– 完全固化后,使用重型卡车将部件运输到现场,并使用起重机和熟练劳动力进行安装。预制建筑部件:- 柱子:-