Sige合金数十年来引起了很多兴趣,尤其是在微电子行业中。如今,它们已在许多设备中使用。的确,由于GE [1]中的较高的孔迁移率和相对较小的晶格参数差异,因此它们与硅设备的兼容性使得能够设计出诸如应变,载流子迁移率和带盖之类的特性。一个人可以使用sige:b源和排水量来压缩PMOS通道,从而改善其电气性能[2]。但是,设备的连续微型化需要形成越来越浅的源/排水(S/d)连接,但具有高掺杂剂激活。因此,退火过程时间尺度变短且较短[3,4]。纳秒激光退火(NLA)可以达到SI [5-7]或GE [8,9]中的较高掺杂剂的激活。紫外线NLA(UV-NLA)也可以用于3D整合,因为其短脉冲持续时间及其短波长导致表面附近的高退化温度,同时将嵌入式层保持在较低的温度下[10-13]。
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
我们报道了一种简便的顶平方形纳秒 (ns) 激光直写 (LDW) 烧蚀技术,在薄银膜基底上制备柔性透明电极的方形银蜂窝结构。方形银蜂窝结构具有表面光滑、边缘清晰、机械稳定性、与基底的强附着力以及良好的电阻和透明度。由于通过一步顶平方形纳秒 LDW 烧蚀银膜进行简便的冷加工,可以制备不同厚度的银网电极 (20 nm、50 nm、160 nm),这些电极具有光滑的金属蜂窝表面和优异的边缘清晰度。特别是,该策略能够制备高方形蜂窝面密度(烧蚀方形蜂窝占总面积的比例)的银网,从而显着提高透明度 (>85%),而不会显著牺牲电导率(<23.2 Ω sq−1 电阻单位)。因此,所提出的金属蜂窝结构显示出与聚萘二甲酸乙二酯(PEN)柔性基板的兼容性,适用于银基可穿戴电子设备,且电极上没有任何保护层。
为了易于理解PWM生成和延迟生成电路,该应用程序项目涵盖了初始化过程和调整PWM输出波形中上升边缘和降落边缘的步骤,该步骤是从GPT通道0到3的输出。该项目还包括用于用户按钮中断的GPT计时器配置和触发源配置,这些中断用于用户交互。您可以使用此示例配置并根据需要更改不同的设置来触发/结束操作。
在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,在50 kHz 8 w时为50 kHz 5 w时355 nm的平均功率为50 kHz 8 w,在50 kHz 10 w时为50 kHz脉冲能量20 µj,在50 kHz 100 µj下为50 kHz 160 µj,在50 kHz 200 kHz脉冲宽度为50 kHz脉冲宽度为50 kHz的速度为50 kHz 20 ns 20 ns 20±4 ns pulse at 50 kHz 160 µj kHz (option up to 300 kHz) Pulse-to-pulse stability 2 < 2% rms Long term power stability 3 < 2% rms Beam spatial mode TEM 00 M 2 < 1.1 Beam pointing stability < 20 µrad Beam divergence < 2.5 mrad Beam roundness ~90% Beam diameter, at exit ~0.3 mm ~0.4 mm Polarization ratio Horizontal; 100:1操作规格和系统特性接口RS232,以太网,软件GUI,外部TTL触发热身时间<待机时间<5分钟,距离冷启动电气需求100-240 V AC <10分钟;或15 V DC,13.4线频率50-60 Hz环境温度4环境10°C至30°C(50°F至86°F)的工作范围,
时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
最近发现的具有空间反转不对称性的反铁磁 (AF) 材料的电诱导切换极大地丰富了自旋电子学领域,并为反铁磁 MRAM 概念打开了大门。CuMnAs 是一种具有这种电切换能力的有前途的 AF 材料,并且已经研究使用长度从毫秒到皮秒的电脉冲进行切换,但很少关注纳秒范围。我们在这里演示了使用纳秒脉冲切换 CuMnAs/GaP。我们的结果表明,在纳秒范围内,可以实现低能量切换、高读出信号以及高度可重复的行为,直至单个脉冲。此外,在同一设备上对正交切换和极性切换两种切换方法进行了比较,显示了两种不同的行为,可以选择性地用于不同的未来内存/处理应用。
在过去的十年中,人们对 DNA 激发态动力学的认识取得了很大进展。[1] 在此背景下,理论研究既集中于单个核碱基的光物理性质,也集中于两个或多个碱基组装体中的相关相互作用,这些研究已成为探索 DNA 激发态衰变机制的有力工具。与单重态激发态相比,我们对三重态激发态的能量和动力学的认识仍然主要局限于单个碱基的性质。[2] 因此,尽管三重态-三重态电子能量转移 (TET) 可以引发 DNA 中的光毒性反应 [3-4],例如胸腺嘧啶环丁烷二聚体的形成 [5],但人们对决定天然 DNA 中三重态命运的核碱基 p 堆叠中 TET 的电子相互作用强度和时间尺度知之甚少。因此,由于三重态激发态的离域程度及其迁移的大致时间尺度存在根本的不确定性,通过超快光谱实验测量的衰变组分的分配仍然是一项艰巨的任务。 [1]
由于摩尔定律的放缓,数据中心流量增长与电气交换机容量之间日益扩大的差距预计会进一步扩大,这促使人们需要一种新的交换技术来满足后摩尔定律时代日益严格的硬件驱动型云工作负载要求。我们提出了 Sirius,这是一种用于数据中心的光交换网络,它提供了一个单一的高基数交换机的抽象,可以连接数据中心中的数千个节点(机架或服务器),同时实现纳秒级的重新配置。在其核心,Sirius 使用可调激光器和简单的无源光栅的组合,可根据波长路由光。Sirius 的交换技术和拓扑与其路由和调度以及新颖的拥塞控制和时间同步机制紧密结合,以实现可扩展但平坦的网络,可提供高带宽和非常低的端到端延迟。通过使用可在 912 ps 内完成调谐的定制可调激光芯片的小型原型,我们展示了 50 Gbps 信道上 3.84 ns 的端到端重构。通过大规模模拟,我们表明 Sirius 的性能接近理想的电交换无阻塞网络,且功耗降低高达 74-77%。