光学非转录表现为相反的激发方向的光的传播差异。非重生光学器件传统上是通过基于法拉第旋转的相对较大的组件(例如光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过跨表面的自由空间非偏置传输,该跨表面由由二氧化硅与二氧化钒杂交的二维纳米孔阵列组成(vo 2)。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转化响应无需外部偏见而发生;取而代之的是,互惠因触发vo 2相变的入射光即以一个方向的速度而损坏。非偏置传输是在λ= 1.5 µm附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据〜0.1λ3,跨表面厚度的测量约为半微米。我们的自偏纳米唱片剂在150 w/cm 2或每纳米甲孔子的速度上表现出非股骨的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传输升高。我们的示范将低功率,宽带和无偏见的光学非转录带给纳米级。
和铁磁交换相互作用。也许最广泛研究的旋转纹理是,首先是在非中心体B20化合物中观察到的类似Bloch的天空,无论是在单个Crys-talls [5]中,在[10]和第二个薄膜中的外皮膜中,第二,在薄膜中层中的Néel-like skyrim层中的néel-like skyrim层中的厚度金属层和厚度的厚度层均层层。[6,11]前者依赖于体积,后者是派生的dmi界面。在最近的研究中,已经证明了基于四Yz的逆元2 yz的抗速素家族可以维持磁性反孔m,[12-14]另一种类型的非共线性自旋纹理,表现出独特的拓扑特征,此外,椭圆形的bloch skyrmions。[15]这些纹理是基础D 2D晶体对称性的结果,该晶体对称性必然引起各向异性DMI。该DMI还导致反对者在场和温度方面的稳定性增强,并且通过简单地改变存在的薄片的厚度来使其大小的极端可调性。[16,17]后者是偶极 - 偶极相互作用的结果,在与低对称性相对的相对量中很重要,例如D 2D,也解释了同一材料系统中椭圆形Bloch Skyrmions的可能性。[15,18,19]
摘要电池驱动的便携式系统是现代时代的生命线。非常大规模的集成(VLSI)设计师一直在努力提高便携式系统的性能。小尺寸,快速响应和高电池备份是便携式系统的主要因素。将金属氧化物半导体场效应晶体管(MOSFET)尺寸缩放为设计低尺寸系统。必须在每个新技术节点上缩放电源和阈值电压,以保持设备的性能。缩放设备阈值电压会产生泄漏电流。泄漏电流的量在集成水平上很大,并且会损害系统的特性。因此,需要泄漏电流缓解措施,尤其是在较低技术节点,以增加便携式系统的电池备份。减少泄漏技术的数量在不同的抽象水平下可用。在本评论论文中,使用不同现有电路泄漏技术的目标探索了低功率VLSI场的系统流。nand3门通过使用不同的现有泄漏技术来进行比较目的设计和模拟在16 nm技术节点上。
该氧化还原反应对应的理论容量约为 890 mAh·g −1 [1-4]。然而,与硅和锡材料类似,TMO 电极的储锂反应在锂化-脱锂过程中会伴随着较大的体积变化[1-4,6],但其体积变化不太显著[1]。这可能会导致电极粉碎,随后活性材料会从集流体上脱落。此外,Co 3 O 4 电极材料的离子和电子电导率较低,导致其充电/放电速度相对较慢[2,4]。为了克服上述缺点,已经提出了一些策略。其中一种方法是形成由 Co3O4 和不同材料组成的复合材料,包括碳基材料,例如石墨烯[7,8]、碳纳米管[9]、碳涂层[10]、竹荪衍生的碳[11]或其他过渡金属氧化物[12]。这种方法通常可以提高电导率,有时还可以减轻体积变化的影响。然而,同时会导致 Co3O4 容量下降。另一种策略与合成程序有关,该合成程序可以生产具有各种形状和形貌的纳米级 Co3O4 材料。已证实,当 Co3O4 材料具有小尺寸或适当的孔径分布和形貌(例如多孔或分级结构)或这两种特征的结合时,其电化学性能会得到改善[3,4]。到目前为止,已经提出了不同的合成方法,包括溶胶-凝胶法[4,6,13-15]、溶胶-电纺丝技术
《模拟电路与信号处理》丛书,前身为《Kluwer 国际工程与计算机科学丛书》,是一套高水准的学术专业丛书,出版有关模拟集成电路和信号处理电路与系统的设计和应用的研究成果。通常每年我们会出版 5-15 本研究专著、专业书籍、手册和编辑本段,分发给世界各地的工程师、研究人员、教育工作者和图书馆。该丛书促进并加快了模拟领域新研究成果和教程观点的传播。全球范围内,该领域开展着大量令人兴奋的研究活动。研究人员正努力通过改进模拟功能来弥合传统模拟工作与超大规模集成 (VLSI) 技术的最新进展之间的差距。模拟 VLSI 已被公认为未来信息处理的主要技术。模拟工作正在显示出巨大变化的迹象,重点是结合设备/电路/技术问题的跨学科研究工作。因此,新的设计概念、策略和设计工具正在被揭示。感兴趣的主题包括:模拟接口电路和系统;数据转换器;有源 RC、开关电容和连续时间集成滤波器;混合模拟/数字 VLSI;仿真和建模、混合模式仿真;模拟非线性和计算电路和信号处理;模拟神经网络/人工智能;电流模式信号处理;计算机辅助设计 (CAD) 工具;新兴技术中的模拟设计 (可扩展 CMOS、BiCMOS、GaAs、异质结和浮栅技术等);模拟测试设计;集成传感器和执行器;模拟设计自动化/基于知识的系统;模拟 VLSI 单元库;模拟产品开发;射频前端、无线通信和微波电路;模拟行为建模、模拟 HDL。
基于石墨烯的2D纳米材料具有独特的物理化学特征,可以在各种生物医学应用中使用,包括化学治疗剂的运输和表现。在多形胶质母细胞瘤(GBM)中,肿瘤内施用的薄石墨烯氧化石墨烯(GO)纳米片在整个肿瘤体积中表现出广泛的分布,而不会影响肿瘤生长,也不会扩散到正常的脑组织中。这种肿瘤内定位和分布可以为GBM微环境的治疗和调节带来多种机会。在这里,描述了原位GBM小鼠模型中GO纳米片分布的动力学,并利用薄GOETEs作为平台的一种新颖的纳米纳米化学化学治疗方法,可用于非共价复杂的蛋白酶体抑制剂bortezomib(BTZ)。通过GO的表征:BTZ复合物,在体外持续的BTZ生物学活性在GO表面上的高负载能力。在体内,与两种原位GBM小鼠模型中的游离药物相比,BTZ复合物的单个小量内给予:BTZ复合物显示出增强的细胞毒性效应。这项研究提供了证据表明,薄和小的Goets通过在本地增加生物利用药物浓度而成为GBM治疗的纳米级平台的潜力,从而提高了治疗性的影响。
预计在TIO 2 IO结构中引入AU NP会导致光催化剂,并在可见的光谱范围内具有增强的光吸收和改善的质量传输特征。Au nps与TiO 2的邻近性具有LSPR和电荷转移22-25,因此很可能是光催化性能。因此,在TiO 2 IO结构中实现对AU NP位置的控制至关重要,这对于介绍NP如何嵌入影响光催化的效率至关重要。在这项工作中,我们提出了一种共同组装策略,可以精确地将Au NP定位在TiO 2 IO矩阵上或内部,并通过使用探针反应的甲基蓝色的光催化降解来评估NP放置对结果的催化活性和NP稳定性的影响。
纳米技术的开发和应用在医疗ELD方面取得了显着进步。各种纳米尺度的构建块为诊断和治疗疾病提供了替代的输送选项。1 - 4食品药物管理局(FDA)已批准了几种纳米载体,用于癌症或其他疾病的临床成像和治疗,例如脂质体和基于脂质的纳米颗粒,蛋白质纳米颗粒,聚合物胶束,无机纳米颗粒等。5 - 8然而,大多数纳米载体被困在临床前研究中,原因有很多:批处理综合,生物相容性问题,缺乏合适的靶向选择部位,尤其是潜在的免疫毒性。9,10理想的纳米载体应具有出色的生物相容性,效果和靶向能力。由于基于脂蛋白的天然纳米颗粒可以满足这些要求,因此这是纳米医学的一个有希望的方向。11
此类材料可用于传感器技术[3–6]、能量存储和转换[7–12]、催化[13,14]以及光学和光电设备等各个领域。[15] 此类材料合成的主要挑战之一是化学功能单元的定制整合。石墨烯等二维碳材料在这方面引起了人们的极大兴趣。[16,17] 然而,石墨烯作为组装分级材料的平台的应用受到限制,特别是由于其化学惰性以及在功能化后物理性质的恶化。[15,18,19] 因此,分子纳米片越来越受到关注,因为它们可以由各种有机化合物灵活组装并本质上提供功能基团。 [20,21] 在这方面,碳纳米膜 (CNM)——厚度约为 1 纳米的分子纳米片,为二维材料的分级组装提供了一个通用平台。[22–25] CNM 可以通过电子辐照诱导芳香族自组装单分子层 (SAM) 交联大规模合成,[23] 具有可调的厚度 [24] 和孔隙率 [24,26],并允许化学功能化 [27,28] 以及气体和离子渗透,[29,30] 等。CNM 的应用示例包括二维片的分级组装,用于生物识别 [31] 和能量漏斗 [27] 应用,以及用于实施
dia-diamond中的负电荷氮态(NV)中心是光学发射器,其水平结构对外部扰动高度敏感,这使它们成为高度局部的电场和磁场,温度和应变的出色传感器[1-5]。NV中心对于量子计算和通信[6-10]以及量子现象(例如量子纠缠和叠加)的研究非常重要[11,12]。但是,由于钻石中的高折射率(〜2.4),有效地提取NV荧光通常会引起人们的注意,这会导致钻石 - 空气接口 - 空气界面和总内部反射的高反射,对于更大的发射角度而言。以前的尝试从散装钻石中提取更多光的尝试主要涉及钻石本身的蚀刻(一个复杂的制造过程,可能会对NV的特性产生不利影响,例如旋转相干性)[13-19]或仍需要高繁殖的机油免疫性易变到iS i iS i iS iS formimentimperife conformentimplients ISS的相互作用(添加了相应的系统)(添加了相应的系统)(添加了相应的系统)[ - 23]。此外,NV中心周围钻石的精确蚀刻可能是一个重大的挑战,可能会损坏钻石的表面,从而导致化学终止的粗糙度和修改[24],从而可以降低NV中心的量子性能[25,26]。在这里,我们设计了一个基于硅的纳米级轻萃取器(NLE),它位于平坦的,未完美的钻石表面的顶部,可以增强近地表NV发射器的光输出超过35倍,与未图案相比,将光线引导到狭窄的圆锥