摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
未来的分子微电子学要求设备的电子电导率可调,而不会损害分子电子特性的电压控制。本文,我们报告了在半导体聚苯胺聚合物或极性聚-D-赖氨酸分子薄膜与两种价态互变异构复合物之一(即 [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] 和 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ])之间创建界面的影响。利用密度泛函理论指导的 X 射线光发射、X 射线吸收、逆光发射和光吸收光谱测量来识别电子跃迁和轨道。除了结合能和轨道能级略有改变外,底层基底层的选择对电子结构影响不大。在 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] 中存在一个显著的未占据配体到金属电荷转移态,该态对 Co II 高自旋态中聚合物和互变异构复合物之间的界面几乎不敏感。
本研究采用渐进式划痕试验研究了采用直流磁控溅射制备的 Ni(25 nm)/Cu(25 nm)/Cr(25 nm) 三层薄膜的微摩擦学特性。研究并比较了四种不同类型的薄膜:沉积态薄膜、低能 Ar + 离子辐照后的薄膜、在真空中 450 °С 退火 15 分钟的薄膜以及离子辐照后真空退火的薄膜。划痕试验辅以结构 (XRD) 和化学 (AES) 实验研究。结果表明,在所有研究的薄膜中,离子辐照后退火的样品表现出最好的微摩擦学和耐磨特性。辐照后退火的样品表现出最高的抗划痕性、光滑的划痕形状、最低的峰值切向力值以及没有侧裂纹和薄膜分层。本文讨论了这种行为的可能原因。
识别靶DNA,然后利用内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3已经通过使用CRISPR/Cas9 DNA(可以编码Cas9的质粒DNA和病毒基因组)、mRNA或蛋白质获得了成功的基因编辑活动。4,5通常,直接递送Cas9/sgRNA RNP复合物是近年来最广泛的方法,因为它具有速度快、基因编辑效率高、离靶效应低和免疫反应低等优点。6然而,尽管基于RNP的治疗方法具有诸多优势,但仍存在一些挑战。目前,物理方法(电穿孔、显微注射等)和病毒载体(腺病毒、腺相关病毒等)仍然是主要的递送策略。 7,8 尽管已报道了一些非病毒纳米载体(如 DNA 纳米线、9 阳离子脂质或聚合物 10 和黑磷 11)用于 RNP 递送,但它们仍然难以在体外和体内实现有效的基因编辑。一般来说,有三个递送问题需要考虑。首先,CRISPR/Cas9 RNP 尺寸较大,表面带电较多,难以浓缩成小尺寸或封装。12
识别靶DNA,然后使用核酸内切酶Cas9蛋白在靶基因位点引入位点特异性双链断裂(DSB)。3通过使用CRISPR/CAS9 DNA(可以编码Cas9的质粒DNA和病毒基因组),mRNA或蛋白质获得了成功的基因编辑活性。4,5通常,CAS9/ SGRNA RNP复合物的直接递送是近年来最广泛的方法,因为其快速作用,高基因编辑效率,低邻靶效应和免疫反应。6然而,对于基于RNP的治疗剂的所有优势,仍然存在一些挑战。目前,物理方法(电力,显微注射等)和病毒载体(腺病毒,腺病毒相关病毒等)仍然是主要的交付策略。7,8尽管已经报道了一些非病毒基纳米载体,例如DNA纳米载体,9张阳离子脂质或聚合物,10和黑磷11用于RNP递送,但它们仍然难以实现,无法实现在体外和体内进行效率的基因。一般而言,需要考虑三个交付过程。首先,CRISPR/CAS9 RNP尺寸较大,表面高度高,因此很难将其凝结成小尺寸或封装。12
有几种合金成分,包括硅,erbium,Neododmium,Gold和Bismuth。使用我们多年的专业知识,我们确保每个源以最大的稳定性流动。也可用于氢,氮,氧和其他气态元件。我们正在不断开发新来源 - 有关可用元素的最新列表,请参见我们的网站。
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 10 月 13 日发布了此版本。;https://doi.org/10.1101/2022.10.10.510523 doi:bioRxiv 预印本
由于非热微/纳米级声子群,热传输超过体积热传导 Vazrik Chiloyan a , Samuel Huberman a , Alexei A. Maznev b , Keith A. Nelson b , Gang Chen a * 1 a 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139 b 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 虽然经典的尺寸效应通常会导致有效热导率降低,但我们在此报告
晶体管尺寸越大,相同芯片面积内可以容纳的晶体管越多,更小尺寸、更高速度、更低能耗是驱动超大规模集成电路技术一代又一代快速发展的不变趋势。然而,如今摩尔定律正在逼近制造工艺的物理极限,目前晶体管的最小栅极宽度已经小于10纳米,如果尺寸继续缩小,制造工艺将变得异常困难。首先,栅极尺寸过窄的晶体管对电流的控制能力会急剧下降,从而产生“漏电流” 。4 – 6此外,为了在芯片上集成更多的晶体管,二氧化硅绝缘层必须越来越薄,而这也会产生漏电流,最终造成额外的功耗,以及信号衰减和电路错误。第二,在5纳米及以下节点制造芯片时,晶体管的电子将受到量子隧穿效应,不再沿着既定的路径移动,5,7-9导致晶体管的特性失控,制造难度和成本增加。