同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
第二,具有侵略性的干蚀刻和湿清洁,对于最佳波导图案至关重要,可能会损害纳米线的制造产量和整体检测器性能。根据所选过程流量,可以实施几种缓解策略。在检测器优先的方法中(在波导蚀刻之前制造纳米线),可以应用封装层以减少纳米线降解。22相反,波导优先的方法(在波导蚀刻后产生纳米线)自然会暴露于侵袭性化学物质中。但是,这种方法可能导致纳米线制造过程的波导质量降解,从而增加了光损失。此外,波导的表面粗糙度可以影响检测器的产量。21在这种情况下,缓冲层20在随后的处理过程中为波导提供了保护,同时也有可能降低表面粗糙度。纳米线的产量也可以通过使用无定形超导体来提高,因为它们的底物要求较少。22
为了竞争生物系统的能力,必须在合成系统中实现对化学反应性的时间控制。大多数合成的自组装过程旨在生成具有高热力学或动力学稳定性的有序结构 - 这些结构处于能量景观的全球最小值或被困在局部最小值中。1通过使用外部刺激(例如pH,光或化学物种添加)来修改能量景观以创建新的最低限度,这些结构可以被迫重新排列新的最小值,从而产生刺激性反应性的自组装过程。2当这种方法产生高功能性系统时,3它要求操作员在适当的时间进行相反的刺激,以在其不同的功能状态之间来回切换系统。为了克服这一局限性并受到生物系统的启发,1 B,4化学家耦合了自组装和耗能的过程,以便自组装过程可以通过光,热或化学物质的形式通过An in的能量的An and and and ux来暂时表达不同的结构。1 b,5这些所谓的“转移自组装”需要持续的能量输入才能持续时间。如果停止了能源供应,这些结构拆除,它们的组件被初始
不降低发射光子的性质,并且可以独立用于同一芯片上的单个NW-QD,到目前为止仍然是一个挑战。解决此问题对于将光子与需要MHz相连的量子系统与Sub-GHz精确的量子系统(例如原子集合)在量子网络中充当记忆的量子系统至关重要。在这里,我们演示了一种可逆的调整方法,可以将NW-QD的发射频率通过sub-GHz精度调整为300 GHz以上。我们通过气体凝结实现这一目标,然后通过局部激光消融将其部分逆转。此过程可很好地调节用于量子点的应力,从而调整其发射频率。我们通过调整跨原子共振的发射单光子的频率来验证该方法的精度和稳定性,以探测其吸收和分散体。我们观察到在D 1-Line共振下,在热纤维蒸气中,NW-QD的单光子吸收多达80%,并且与D 1-LINE基态的超精细转变相关的组速度下降75倍。我们观察到NW-QD发射的二阶自相关函数,寿命或线宽的效果没有明显的效果,最多可以调音300 GHz,并且在调音高达100 GHz时,我们看到对NW-QD的细胞结构分裂的影响最小。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
在我们的环境中,大量的废热促使人们寻找收集热量的方法。作为一种可靠的供能方式,SiGe 几十年来一直用于太空任务中的热电发电机 (TEG)。最近,微型热电发电机 (µ TEG) 已被证明是一种利用日常废热为物联网 (IoT) 供能的有前途的方式。Si 纳米线和 SiGe 纳米线结合了主要的 CMOS 兼容性以及高电导率和低热导率性能,已成为 µ TEG 的候选材料。本综述全面介绍了 Si、SiGe 纳米线及其用于 µ TEG 的可能性。深入讨论了热电的基本原理、材料、结构、制造、测量和应用。
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。
“用于现实世界应用和开发的高级材料”将提供非常详细的概述,概述各种功能材料和新兴的高级设备,用于高科技领域的现实世界应用。The course will start with an overview of different classes of functional materials, including semiconductors, nanomaterials, composites, biomaterials, piezoelectric, and thermoelectric materials with a particular focus on their implementation in real-world applications, with main attention to electronic devices, including solar cells, light emitting diodes, transistors, capacitors and sensors.该模块将继续详细说明这些新兴的高级功能材料的必要概念,这些材料将使学生能够解释材料选择,产品设计,设备制造,表征技术,材料翻译,市场趋势及其未来前景的原理。该模块将弥合基本材料科学知识与实现现实世界应用中新型产品设计和制造的实施之间的差距。此外,还将提供许多基于新型功能材料的实际应用的工业和企业案例研究。该模块将在学生中发展各种不同的能力和技能,使他们能够为未来的企业冒险,行业的就业工作做好准备,并在博士层面进行进一步的研究