©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
纳米结构二氧化钛 (NS-TiO2) 是一种无毒、环保、廉价、高效的功能材料,具有广泛的应用范围 [8–11]。在过去的十年中,纳米结构 TiO2 可以具有化学计量或非化学计量组成,作为一种有前途的高效光催化剂,用于合成符合绿色化学原则的有机化合物,引起了世界各地研究人员的越来越多的关注 [12–17]。如今,纳米结构材料由于其一些独特的特性而成为一个重要的研究领域。在所有过渡金属氧化物中,TiO2 纳米结构是现代科学技术中最美观的材料 [1]。纳米 TiO2 纳米结构包括二氧化钛纳米颗粒 (TiO2-NPs) 和二氧化钛纳米管 (TNTs) [18]。随着纳米技术的发展,NS-TiO2 找到了许多应用。纳米二氧化钛(nano-TiO2)已广泛应用于环境保护、化妆品、抗菌剂、自清洁涂料和癌症治疗、太阳能电池、光催化和复合纳米填料[19–21]。由于其独特的尺寸和高比表面积,纳米 TiO2 比二氧化钛具有更稳定的物理和化学性质。此外,纳米 TiO2 具有良好的抗菌活性、良好的生物相容性和独特的光催化活性[24],在生物医学领域具有巨大的应用潜力[22, 23]。研究表明,纳米结构 TiO2 可引发良好的分子反应和骨整合,骨形成效果优于非纳米结构材料[25–27]。所有这些形式的 NS–TiO2 的独特物理化学性质使该材料在许多应用中具有光明的未来。已经发表了一些关于二氧化钛不同方面的评论和报告,包括其性质、制备、改性和应用。然而,尽管纳米结构二氧化钛系统在骨修复方面的发展取得了进展,但关于这一主题的评论文章仍然很少[28]。本章的目的是介绍和讨论纳米结构二氧化钛(NS-TiO 2 )的性质[29]、制造、改性和应用。随着纳米技术的出现,NS-TiO 2 已发现了许多应用。
2019 年 7 月和 8 月,《材料学报》(第 60 卷,第 7 和第 8 期)编辑了一期特刊,标题为“具有高级功能纳米材料的剧烈塑性变形”。25)本期特刊共包含 41 篇文章,主要包括评论和概述文章,以及一些额外的常规文章。它涵盖了基于工艺开发的SPD相关研究,26 28) 结构特性评估26,29 35) 和功能特性评估36 45) 建模和仿真,46,47) 材料合成,32,48,49) 晶格缺陷的作用,35,50 53) 晶粒细化和微观结构演变,36,54 57) 压力和/或应变诱导的相变,47 49,58,59) 应用于聚合物60) 以及金属和非金属玻璃,61)
如今,可充电锂离子电池已成为现代日常生活中不可或缺的一部分。作为传统储能系统的有前途的替代品,它们具有多种优势。本综述旨在让读者深入了解各种锂离子电池 (LIB) 电极纳米材料的工作机制、当前技术进展和科学挑战。电化学热力学和动力学是我们介绍的两个主要观点,旨在为电极材料的合理设计提供信息基础。此外,阳极和阴极材料都被分为几种类型,并使用一些具体的例子来展示它们的优点和缺点,并提出了一些改进建议。此外,我们总结了纳米结构阳极和阴极材料的合理设计和合成方面的一些最新研究进展,以及它们相应的电化学性能。基于所有这些讨论,总结并提出了 LIBs 进一步发展的潜在方向。
二氧化锰 (MnO 2 ) 因作为水系超级电容器电极具有较宽的电位窗口而受到广泛关注。然而 MnO 2 的低电导率严重阻碍了它的进一步发展。可以通过在 MnO 2 中引入适当浓度的三价 Mn 离子来解决这个障碍。在此,通过电位电化学沉积法将 Mn 3+ /Mn 4+ 比可调的纳米结构 MnO 2 沉积到导电碳布基底 (CC) 上。在 70 °C 下沉积的 Mn 3+ /Mn 4+ 比约为 0.99 的 MnO 2 电极在 1 A g − 1 时显示 408.1 F g − 1 的比电容,在 10 A g − 1 下经过 2000 次循环后仍保持 99% 的容量。本文从Mn 3+ -O-Mn 4+ 的角度阐述了Mn 3+ 离子的引入对MnO 2 电极电化学性能的影响
近年来,全世界见证了纳米技术领域的重要进展,纳米技术领域对科学和工业的各个领域产生了强烈的影响,在电子,1医药,2和能量存储方面创造了新的应用。3在这个意义上,文献中已经产生并报告了几种具有不同组成的纳米级材料。纳米材料可以根据其组成进行分类。例如,二氧化硅(SIO 2),4个量子点(QD),5个碳圆点(CD),6和纳米颗粒(金属和非金属金属),其中7种,已被广泛合成并在几个区域中进行了合成和应用。在纳米医学中,更具体地说,文献表明纳米级材料显示出许多优势,包括分解和/或治疗人类疾病。8在理论上,由于独特的光学特性,相对稳定性,高亮度,高量子产率,生物相容性和生物降解性,9一些纳米材料可以用作有前途的工具来帮助生成生物图像,2诊断,10,10和人类疾病的处理(图1)。11
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
摘要在这项工作中,已经报道了与水热法有关的koh-naOH的立方样comn 2 o 4均匀纳米结构的合成。通过X射线衍射(XRD),田间发射扫描电子显微镜(FE-SEM),高分辨率透射透射电子显微镜(HR-TEM)分析研究了Comn 2 O 4的晶体结构相纯度和形态。Comn 2 O 4的电化学材料已经检查了超级电容器的电活性材料。电子差异具有出色的电化学特性。具有足够自由空间的立方样形态结构有益于改善电化学性能。COMN 2 O 4电极表现出最高特异性电容值762.4 F G -1的法拉达电容,扫描速率为5 mV s -1。发现Comn 2 O 4电极的库仑效率在2000年充电循环后为91.2%。COMN 2 O 4的纳米结构对制备电极的出色电化学性能产生了明显的贡献。