其他声明:是的,存在潜在的竞争利益。Rob Knight是BioMesense,Inc。的科学顾问委员会成员兼顾问,具有公平性并获得收入。他是科学顾问委员会成员,在Gencirq拥有权益。他是Daytwo的顾问和科学顾问委员会成员,并获得收入。他拥有公平,并担任赛贝尔的顾问。他是Biota,Inc。的共同创始人,并具有公平性。他是Micromana的联合创始人,具有公平性,并且是科学顾问委员会成员。根据其概述的政策,已由加州大学圣地亚哥分校对这些安排的条款进行了审查和批准。Daniel McDonald是BioMesense,Inc。的顾问,拥有股权并获得收入。 根据其概述的政策,已由加州大学圣地亚哥分校对这些安排的条款进行了审查和批准。Daniel McDonald是BioMesense,Inc。的顾问,拥有股权并获得收入。根据其概述的政策,已由加州大学圣地亚哥分校对这些安排的条款进行了审查和批准。
RL 报道雇主:斯坦福大学;咨询公司:Calliditas Inc.、Chinook (Novartis) Inc.、Omeros Inc.、Otsuka Inc.、Alexion Inc.、Travere Inc.、Vera Inc.、Novartis、Aurinia、Visterra、Alpine Bio 和 Beigene;研究资金:NIH、Roche、Otsuka、Calliditas、Travere、Alexion Chinook(诺华)、Vera 和 Beigene。
谷物尚未被观察到,因为经典的R-基因是易于克服的。的确,病原体种群的大量基因组变异性可能是由可转座元素,高突变和重组率以及有丝质和梅西斯期间不正确的染色体分离引起的,共同导致迅速发展的新毒力表型感染了以前的抵抗植物(Mouller et and and and and and and 2017)。 如今,人们对植物发作过程中真菌和细菌病原体采用的分子机制已被充分了解。 植物表现出对大多数微生物的免疫力,由不同的耐药层介导。 与病原体相关的分子模式(PAMP)接触时,植物免疫系统的第一层被植物模式识别受体(PRR)激活,这对于病原体至关重要,因此可以使结构性不变的分子(例如壳聚糖和分支的β-葡聚糖luculucan fungulucan fungulucan fungal fungal fungal fungal fungal fungal fungal fungal fungal fingal fungals fragments fragments fragments fragments或capterial flagellin of to nisty Inders of and pamp)激活。 由于pAMP识别而建立了PAMP触发的免疫力(PTI)。 然而,成功的病原体已经开发出了通过修饰细胞表面和pAMP暴露和/或通过分泌效应子来避免pAMP识别的机制(Oliveiragarcia and Valent 2015)。 对抗药性遗传学的分子理解的显着突破是Harold H. Flor的X射线诱变实验与异源性亚麻生锈菌菌孢子(Flor 1958),最终引起了基因基因假设。 这一假设表明微生物气相(AVR-)基因产物被植物识别2017)。如今,人们对植物发作过程中真菌和细菌病原体采用的分子机制已被充分了解。植物表现出对大多数微生物的免疫力,由不同的耐药层介导。与病原体相关的分子模式(PAMP)接触时,植物免疫系统的第一层被植物模式识别受体(PRR)激活,这对于病原体至关重要,因此可以使结构性不变的分子(例如壳聚糖和分支的β-葡聚糖luculucan fungulucan fungulucan fungal fungal fungal fungal fungal fungal fungal fungal fungal fingal fungals fragments fragments fragments fragments或capterial flagellin of to nisty Inders of and pamp)激活。由于pAMP识别而建立了PAMP触发的免疫力(PTI)。成功的病原体已经开发出了通过修饰细胞表面和pAMP暴露和/或通过分泌效应子来避免pAMP识别的机制(Oliveiragarcia and Valent 2015)。对抗药性遗传学的分子理解的显着突破是Harold H. Flor的X射线诱变实验与异源性亚麻生锈菌菌孢子(Flor 1958),最终引起了基因基因假设。这一假设表明微生物气相(AVR-)基因产物被植物识别
1 Liggins Institute,新西兰奥克兰大学2分子医学与病理学,新西兰奥克兰大学,新西兰3遗传健康服务3遗传健康服务局,奥克兰TE TOKA TUMAI,TE TOKA TUMAI,TE TOKA TUMAI,4 Starship儿童健康澳大利亚墨尔本6墨尔本大学医学,牙科和健康科学学院,澳大利亚墨尔本大学7诊断遗传学,病理学和实验室医学系,TE TOKA TUMAI,奥克兰 *这些作者为这项工作做出了同样的贡献。 ⱡ对应作者:justin.osullivan@auckland.ac.nz1 Liggins Institute,新西兰奥克兰大学2分子医学与病理学,新西兰奥克兰大学,新西兰3遗传健康服务3遗传健康服务局,奥克兰TE TOKA TUMAI,TE TOKA TUMAI,TE TOKA TUMAI,4 Starship儿童健康澳大利亚墨尔本6墨尔本大学医学,牙科和健康科学学院,澳大利亚墨尔本大学7诊断遗传学,病理学和实验室医学系,TE TOKA TUMAI,奥克兰 *这些作者为这项工作做出了同样的贡献。ⱡ对应作者:justin.osullivan@auckland.ac.nz
黑色素瘤对靶向治疗和免疫治疗的耐药性与代谢重组有关。在这里,我们表明,在长期 BRAF 抑制剂 (BRAFi) 治疗期间,脂肪酸氧化 (FAO) 增加会导致小鼠获得性治疗耐药性。使用美国食品药品管理局和欧洲药品管理局批准的抗心绞痛药物雷诺嗪 (RANO) 靶向 FAO 可延缓获得性 BRAFi 耐药性的肿瘤复发。单细胞 RNA 测序分析表明,RANO 减少了对治疗有抵抗力的 NGFR hi 神经嵴干细胞亚群的丰度。此外,通过重新连接蛋氨酸挽救途径,RANO 通过增加抗原呈递和干扰素信号传导来增强黑色素瘤的免疫原性。RANO 与抗 PD-L1 抗体的结合通过增加抗肿瘤免疫反应大大提高了生存率。总之,我们表明 RANO 通过对 FAO 和蛋氨酸挽救途径的影响提高了靶向黑色素瘤治疗的疗效。重要的是,我们的研究表明 RANO 可以使 BRAFi 抗性肿瘤对免疫疗法敏感。由于 RANO 的副作用非常轻微,它可能成为一种治疗选择,以改进目前用于治疗转移性黑色素瘤的两种主要策略。
来自 1 瑞典乌普萨拉大学生命科学实验室免疫学、遗传学和病理学系;2 挪威奥斯陆大学奥斯陆大学医院与临床医学研究所精神健康和成瘾科 NORMENT 中心;3 挪威奥斯陆大学 KG Jebsen 神经发育研究中心;4 丹麦哥本哈根大学健康与医学科学学院诺和诺德基金会蛋白质研究中心;5 丹麦哥本哈根大学医院 Rigshospitalet,Blegdamsvej 9;6 瑞典隆德大学临床科学系隆德大学糖尿病中心遗传和分子流行病学系;7 丹麦赫勒鲁普诺和诺德基金会;8 瑞典于默奥大学医学生物科学系; 9 诺和诺德基金会基础代谢研究中心,哥本哈根大学健康与医学科学学院,丹麦哥本哈根;10 美国纽约州纽约市西奈山伊坎医学院西奈山查尔斯布朗夫曼个性化医学研究所;11 海德堡大学心脏病学系海德堡心脏遗传学中心精准数字健康,德国海德堡;12 瑞典斯德哥尔摩卡罗琳斯卡医学院 Södersjukhuset 临床科学与教育系;13 瑞典斯德哥尔摩萨克斯儿童与青少年医院;14 瑞典斯德哥尔摩环境医学研究所卡罗琳斯卡医学院综合代谢组学系;15 瑞典斯德哥尔摩卡罗琳斯卡大学医院呼吸医学与过敏科; 16 瑞典哥德堡大学萨尔格伦斯卡学院临床科学研究所妇产科系;17 瑞典哥德堡萨尔格伦斯卡大学医院妇产科系;18 挪威奥斯陆公共卫生研究所健康数据和数字化领域遗传学和生物信息学系
利什曼病是拉丁美洲、非洲、亚洲和欧洲的主要公共卫生问题之一。由于缺乏人用疫苗和有效的媒介控制计划,化疗成为控制所有形式该疾病的主要策略。然而,现有药物的高毒性、治疗药物的选择有限以及耐药性寄生虫菌株的出现是与化疗相关的主要挑战。目前,只有少数药物可用于利什曼病治疗,包括五价锑化合物 (SbV)、两性霉素B及其制剂、米替福新、硫酸巴龙霉素和羟乙基磺酸喷他脒。除了药物毒性之外,利什曼病的治疗失败也是一个严重的问题。耐药性寄生虫的出现是治疗失败的原因之一,并且与该属寄生虫的多样性密切相关。由于基因组具有巨大的可塑性,抗药性可以通过改变不同的代谢途径产生,这表明抗药性机制是多因素的,极其复杂。遗传变异和基因组可塑性不仅导致现有药物存在局限性,而且使寻找新药变得具有挑战性。在这里,我们研究了阻碍药物发现的寄生虫的生物学特性。
鳄梨 (Persea americana) 是木兰科植物的一种,木兰科植物是被子植物的早期分支谱系,其果实营养丰富,在全球具有很高的价值。在这里,我们报告了商业鳄梨品种 Hass 的染色体水平基因组组装,该品种占世界鳄梨消费量的 80%。使用由遗传图谱支持的先前发布的基因组版本进一步组装由 Pacific Biosciences HiFi 读数产生的 DNA 重叠群。总组装体为 913 Mb,重叠群 N50 为 84 Mb。分配给 12 条染色体的重叠群代表 874 Mb,覆盖了 98.8% 的胚性植物基准单拷贝基因。蛋白质编码序列注释确定了 48 915 个鳄梨基因,其中 39 207 个可归因于功能。基因组含有 62.6% 的重复元素。研究了基因组中感兴趣的特定生物合成途径。分析表明,鳄梨中庚糖生物合成的主要途径可能是通过景天庚酮糖 1,7 双磷酸,而不是通过其他途径。内切葡聚糖酶基因数量众多,与鳄梨使用纤维素酶催熟果实一致。尽管经历了多次基因组复制事件,但鳄梨基因组似乎在同源染色体之间有有限数量的易位。与相关物种的蛋白质组聚类允许识别鳄梨和樟科其他成员特有的基因,以及在单子叶植物和真双子叶植物分化前或分化时分化的物种特有的基因。该基因组提供了一种工具,以支持未来开发产量和果实质量更高的优质鳄梨品种。
1 CELLphenomics GmbH,罗伯特-罗斯勒-Str。 10, 13125 柏林, 德国; ulrike.pfohl@cellphenomics.com(上); juergen.loskutov@cellphenomics.com (JL); christoph.reinhard@cellphenomics.com (CR); lena.wedeken@cellphenomics.com (LW) 2 法兰克福歌德大学分子生物科学研究所,Max-von-Laue-Str。 13, 60438 法兰克福, 德国 3 基因组工程与疾病模型,Max Delbrück 分子医学中心,Robert-Rössle-Str. 13, 60438 法兰克福, 德国10, 13125 柏林, 德国; sanum.bashir@biontech.de (SB); ralf.kuehn@mdc-berlin.de (RK) 4 NMI 自然科学与医学科学研究所,图宾根大学,Markwiesenstraße 55, 72770 Reutlingen,德国;patrick.herter@boehringer-ingelheim.com (PH);markus.templin@nmi.de (MT) 5 ASC Oncology GmbH,Robert-Rössle-Str. 10, 13125 Berlin,德国 6 病理学研究所,柏林夏利特大学医学院,Virchowweg 15, Charité pl. 1, 10117 Berlin,德国;soulafa.mamlouk@charite.de 7 生物技术研究所,赫尔辛基大学,Viikinkaari 5, Biocenter 2, 00790 Helsinki,芬兰; sergei.belanov@helsinki.fi 8 罗斯托克大学医学中心普通外科、分子肿瘤学和免疫治疗诊所,Schillingallee 35, 18057 罗斯托克,德国;michael.linnebacher@med.uni-rostock.de 9 罗斯托克大学医学中心普通外科诊所,Schillingallee 35, 18057 罗斯托克,德国;florian.buertin@med.uni-rostock.de 10 巴塞尔大学医院,Petersgraben 4, 4031 巴塞尔,瑞士;marcus.vetter@ksbl.ch 11 巴塞尔兰州立医院,Rheinstr. 26, 4410 Liestal, Switzerland 12 Institute of Pathology, University Hospital Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, German * 通讯地址:christian.regenbrecht@cellphenomics.com