1)印度宪法及其显着特征2)联盟和州的职能和责任,议会和州立法机关 - 结构,职能,权力和特权。与联邦结构有关的问题和挑战 - 权力和财务上的权力和财务上的权力转移到其中3)宪法机构 - 权力,职能和责任4)Panchayati Raj,公共政策和治理,L.P.G的影响,对治理的影响,对治理5)5)法规和律师事务,司法和Quasial Wifters of Wifter of Wifter,SESC/SEST ST.),《道理》 7)印度的外交政策,国际组织,国际条约和论坛,其结构和授权8)印度的司法机构 - 结构和职能,与紧急和宪法修正案有关,司法审查,司法审查,公共利益诉讼,土地收入法律的无能规定,土地税收法律9)基本权利,基本权利,基本权利和董事第10条法律。
可解释的强化学习的理论和算法基础,用于智能计算和建模马里兰州大学公园Haizhahao yang hzyang@umd.edu yannis kevrekidis dso深度学习,以发现最佳,可融合的无机多孔材料, Decentralized Sequential Decision Making in the Data-Limited Regime: A Self-Supervised Pretrained Foundation Model Approach Ohio State University Jia (Kevin) Liu liu.1736@osu.edu Alvaro Velasquez I2O Decentralized Online Parameter- Efficient Fine-Tuning of Compressed Models Cornell University Christopher De Sa cmd353@cornell.edu Alvaro Velasquez i2o
基因组学和疾病研究、高通量数据分析、网络生物学、计算遗传学、模型解释和可视 化、生物数据挖掘、比较基因组学、机器学习和医学影像分析、蛋白质结构与功能预测、 宏基因组学与微生物组、知识图谱构建、生物信息学工具开发、转录组学和表达谱的分析、 药物发现与设计、遗传流行病学、蛋白质组学、个性化医疗与精准医学、生物医学工程、 结构生物信息学、计算工具和软件开发、进化生物信息学、系统生物学、环境与生态计算 生物学和流行病学、计算生态学、序列分析、模式识别与生物信号处理、生物信息学与统 计分析、下一代测序技术、计算生物学与人工智能的融合、生物数据挖掘、处理与分析、 计算医学与临床应用、代谢组学、生物信息学工具与网络科学。
有人可能会说这是意料之外的,而且似乎很少有人对此消息感到震惊。Garmin 是一家航空电子设备和集成驾驶舱的主要供应商,其产品范围从轻型运动飞机到轻型商务喷气机,它向新领域发起了进攻:“大型”飞机市场(起飞重量超过 12,500 磅的飞机)从轻型喷气机部分的高端向上延伸,因此必须根据第 25 部分进行认证。由于认证规则被认为比第 23 部分(该公司此前专注于航空领域)更为严格,Garmin 的新款 G5000 将在 2012 年获得认证并投入使用后,完成 Garmin 在航空领域各个领域的扩张。如果 2012 年看起来特别雄心勃勃或突然,那么值得注意的是,该公司表示已经完成了开发和认证的一半。 Garmin 高管承认,该公司不会停止开拓新市场——第 25 部分市场既是新市场,又具有潜在的利润空间。经过二十年的努力,这家 GPS 打造的公司已成为第 23 部分飞机通用航空电子设备领域的主导者,现在正将其业务范围扩大到长期由两大航空电子设备巨头主导的领域:罗克韦尔柯林斯,很久以前就退出了活塞单引擎和双引擎飞机的生产;以及霍尼韦尔,它已经与 Garmin 在第 23 部分市场(直至 LSA 领域)展开正面竞争。行业观察家和行业传闻将 Garmin 称为
摘要 — 受大脑启发的超维 (HD) 计算是一种模拟高维空间中神经元活动的新型计算范式。HD 计算的第一步是将每个数据点映射到高维空间(例如 10,000)。这带来了几个问题。例如,数据量可能会激增,所有后续操作都需要在 D = 10,000 维中并行执行。先前的工作通过模型量化缓解了这个问题。然后可以将 HV 存储在比原始数据更小的空间中,并且可以使用较低位宽的操作来节省能源。然而,先前的工作将所有样本量化为相同的位宽。我们提出了 AdaptBit-HD,一种用于加速 HD 计算的自适应模型位宽架构。当可以使用更少的位来找到正确的类时,AdaptBit-HD 一次一位地对量化模型的位进行操作以节省能源。借助 AdaptBit-HD,我们可以在必要时利用所有位来实现高精度,并在设计对输出有信心时终止较低位的执行,从而实现高能效。我们还为 AdaptBit-HD 设计了一个端到端 FPGA 加速器。与 16 位模型相比,AdaptBit-HD 的能效提高了 14 倍;与二进制模型相比,AdaptBit-HD 的精度提高了 1.1%,与 16 位模型的精度相当。这表明 AdaptBit-HD 能够实现全精度模型的精度,同时具有二进制模型的能效。
摘要 — 本文旨在比较具有宽输入电压范围的 DC/DC 拓扑。研究还解释了 GaN E-HEMT 晶体管的实现如何影响转换器的整体效率。本文介绍了选择最有效拓扑的过程,以将电池存储电压(9 V – 36 V)稳定在 24 V 水平,从而能够在自动电动汽车等广泛应用中使用超级电容器储能。为了选择最合适的拓扑,进行了模拟和实验室研究。选择了两种最有前途的拓扑在实验模型中进行验证。每个转换器都以两种版本构建:使用 Si 和 GaN E-HEMT 晶体管。本文介绍了实验研究结果,包括精确的功率损耗测量和热分析。还检查了转换器开关频率增加时的性能。
近年来,半导体过程技术的演变继续缩小大型集成电路中的临界维度[1-3]。高级芬费逻辑过程已经变得更加复杂,可以在多功能和更强大的SI芯片中实现更紧密的晶体管。反应性离子蚀刻步骤通过等离子体增强[4-5]在高级纳米级过程中不可避免地实现高纵横比结构,这对于高包装密度电路至关重要[6]。对于超过45nm的CMOS技术节点,晶体管门从带有二氧化硅的常规聚硅门变为高K金属栅极堆栈[7-8]。这种变化不仅使设备更容易受到血浆诱导的损害的影响,而且可能导致对高K介电层的潜在潜在损害[9]。在最先进的FinFET制造过程中,不可避免地会产生较高的等离子诱导充电事件的RF等离子体步骤,例如蚀刻,沉积和清洁过程,这会产生较高的频率[10]。可能会在金属结构上进行正充电和负电荷。随着这些电荷经过预先存在的金属线和触点制成的导电路径,通过电路的脆弱部分进行了不良放电,尤其是通过晶体管栅极介电介电出现可能会带来重大的可靠性问题。例如,在干燥的蚀刻步骤中,散射在反应表面上撞击离子和溅射材料会导致散装鳍中更多的缺陷[11-12]。为了避免等离子充电事件导致电路不可逆转的损害,给出了限制金属结构尺寸的设计规则。减轻PID的另一个例子包括使用保护二极管,这可能会使血浆充电电流从敏感电路中移开[13]。引入原位蒸汽产生(ISSG)氧化门报道,据报道提高其对血浆损伤的耐受性[14]。此外,还发现修剪腔室和修饰PECVD-TI沉积过程可减轻血浆诱导的损伤[15]。这些方法中的大多数会导致电路设计灵活性或处理权衡的不良限制。
骨盆底疾病,包括骨盆器官脱垂和压力尿失禁,是普遍的健康问题,一生中影响了约50%的女性,约有75%的65岁以上女性受到影响。传统的手术干预措施,例如经阴道网状植入物,导致了许多并发症,导致它们在几个国家的禁令。这项研究引入了一种创新的复合网格,旨在通过结合聚甲基丙烯酸酯和热塑性聚氨酯来减轻这些问题,并使用碘掺杂的碳纳米颗粒进一步增强,以通过医学成像启用可见性。网格涂有2-甲基丙烯酰氧甲基磷酸胆碱聚合物,以防止蛋白质吸附并促进组织再生。体外研究显示出高细胞活力和低蛋白吸附,表明出色的生物相容性。在小鼠中植入网格(有或没有碘)对整体动物健康没有不利影响。 小鼠脾脏重量(炎症的指标)之间相似。然而,在小鼠植入碘化的网格后,某些细胞因子(即IL-10,IL-17A和GM-CSF)的水平升高,这表明需要进一步改进复合网格。 与生理状态相关的粪便微生物组的分析表明,假和碘化的网格植入组保持了一致的微生物特征,并具有稳定的多样性(丰富性和偶数)度量。 我们的发现表明,该复合材料具有紧密模仿的机械性能在小鼠中植入网格(有或没有碘)对整体动物健康没有不利影响。小鼠脾脏重量(炎症的指标)之间相似。然而,在小鼠植入碘化的网格后,某些细胞因子(即IL-10,IL-17A和GM-CSF)的水平升高,这表明需要进一步改进复合网格。与生理状态相关的粪便微生物组的分析表明,假和碘化的网格植入组保持了一致的微生物特征,并具有稳定的多样性(丰富性和偶数)度量。我们的发现表明,该复合材料具有紧密模仿的机械性能相反,未固化的网格组在网格植入后表现出降低的物种丰富度,这可能是由于植入前明显的起始微生物组组成所致。这项研究设想为治疗骨盆底疾病的更安全,更有效的解决方案,提供非侵入性的植入后监测,并增强手术网格与天然组织的机械兼容性。
玛丽伯勒 - Gin Gin:Torbanlea 至 Childers 安全和小规模容量升级 玛丽伯勒 - Gin Gin:Childers 至 Apple Tree Creek 安全升级 玛丽伯勒 - Gin Gin:Sandy Creek 至 Duingal Creek 安全升级(包括 WCLT) 玛丽伯勒 - Gin Gin:Duingal Creek 至 Booyal School 桥梁更换和安全升级(包括 WCLT) 玛丽伯勒 - Gin Gin:Booyal School 至 Wallaville 防洪和安全升级(包括 WCLT) 玛丽伯勒 - Gin Gin:Gin Gin 南部进场安全升级(包括 WCLT)