第 4 季度事故高峰 在我们继续关注减少第 4 季度事故高峰的同时,第 102 期包括三篇与该任务相关的文章。首先,由首席准尉 4 Rocha 和评估与标准化局的 Silva 少校提交的一篇文章,介绍了如何正确使用应急响应方法并将其应用于机组;其次,一条简短的情景信息,介绍了机组人员的选择和风险缓解,旨在帮助经验不足的机长在遇到意外风险增加和潜在控制措施时;第三,简要回顾了任务简报流程和任务简报官的重要性。此外,事故回顾还着眼于与高操作节奏、低照度、机组协调和疲劳相关的因素。这些因素可能与第 4 季度的准备培训以及部署到培训中心和 OCONUS 有关。
数字化和数字化转型、大数据和人工智能以及量子计算和区块链技术是当今媒体上最热门和被引用最多的流行语。每个人都听说过它们,但只有少数人理解它们。打个比方,他们似乎乘坐着一列即将出发的高铁。没有人知道从哪里出发,又要去哪里,但每个人都想立即上车,以免错失机会。因此,数字技术一直是政治、工业和社会中激烈猜测和争论的主题,这些猜测和争论是由夸大的希望和恐惧驱动的。乐观主义者强调数字技术的巨大未来前景,并设想新的非常实用的应用的到来,这些应用创造的就业机会甚至比数字化摧毁的还要多。另一方面,悲观主义者散布对数字技术的恐惧,担心超越人类智慧的智能且往往暴力的机器人会造成大规模失业,从而使数百万个工作岗位消失。
摘要:尽管由于政府旨在减少可再生能源普及障碍的政策,欧盟住宅部门的可再生能源采用率已大幅增加,但由于行为障碍和其他障碍,家庭部署可再生能源的全部潜力仍未实现。家庭采用可再生能源技术的最重要因素之一是实施可再生能源的决策;因此,在分析家庭可再生能源接受度时应考虑行为经济学的见解。本文通过分析政策和措施,对家庭可再生能源使用进行了系统的文献综述,这些政策和措施可以通过克服主要障碍来增加家庭可再生能源的使用。利用欧盟统计局的数据,对欧盟家庭可再生能源消费的动态进行了分析,并在立陶宛进行了实证案例研究,以了解家庭接受可再生能源的主要原因。尽管近年来欧盟成员国可再生能源的使用量大幅增加,但研究发现,传统政策无法克服以下最常见的障碍:(1)前期成本高、回报期长;(2)缺乏信息和知识;(3)对环境问题的重视程度低;(4)抵制改变;人类习惯。案例研究表明,大多数立陶宛家庭都希望在家中使用可再生能源技术,但他们遇到了财务困难和基础设施缺乏的问题。政策建议是根据研究结果制定的。
更高形式的对称性是对物质拓扑阶段进行分类的宝贵工具。然而,由于存在拓扑缺陷,相互作用多体系统中出现的高色对称性通常不准确。在本文中,我们开发了一个系统的框架,用于建立具有近似更高形式对称性的有效理论。我们专注于连续的u(1)q形式对称性和研究各种自发和显式对称性破坏的阶段。我们发现了此类阶段之间的双重性,并突出了它们在描述动态高素质拓扑缺陷的存在中的作用。为了研究物质这些阶段的平衡性动力学,我们制定了各自的流体动力学理论,并研究了激发的光谱,表现出具有更高形式的电荷松弛和金石松弛效应。我们表明,由于涡流或缺陷的增殖,我们的框架能够描述各种相变。这包括近晶晶体中的熔融跃迁,从极化气体到磁流失动力学的血浆相变,旋转冰跃迁,超流体向中性液体转变以及超导体中的Meissner效应。
摘要 — 为满足对小型天线、更高性能和更低成本的需求,大多数下一代架构都要求更高的集成电路 (IC) 芯片集成度。与传统封装配置相比,2.5D 和 3D 等先进芯片封装技术提供了更高的芯片兼容性和更低的功耗。鉴于这些优势,采用先进封装是不可避免的。在先进封装中,铜柱互连是一项关键的支持技术,也是下一个合乎逻辑的步骤。该技术提供了多种优势,包括提高抗电迁移能力、提高电导率和热导率、简化凸块下金属化 (UBM) 和提高输入/输出 (I/O) 密度。铜柱允许的细间距有助于该技术取代焊料凸块技术,后者的最小间距约为 40 微米。更细的间距允许更高的 I/O 数量,从而提高性能。在本研究中,成功展示了在高密度中介层上超薄单片微波集成电路 (MMIC) 氮化镓 (GaN) 细间距铜柱倒装芯片组件的组装。使用 150 毫米间距铜柱倒装芯片,评估了有机印刷电路板 (PCB) 和硅中介层的组装工艺,并评估了化学镀镍浸金 (ENIG) 和共晶锡铅焊盘表面处理。对于 2D/2.5D/3D 组装工艺开发,使用了标准的内部拾取和放置工具,然后进行大规模焊料回流,最后进行底部填充以进行可靠性测试。互连稳健性由芯片拉力强度、助焊剂冲压调查和横截面决定。完成了 GaN 铜柱倒装芯片 2D 组装的完整可靠性和鉴定测试数据,包括 700 次温度循环和无偏高加速温度/湿度应力测试 (UHAST)。将铜柱技术添加到 GaN MMIC 芯片中,将 GaN Cu 柱技术集成到 2.5D/3D 封装技术中,并在中介层级评估 GaN Cu 柱互连可靠性都是这项工作的独特之处。
乳酸菌 (LAB) 是发酵牛奶所必需的,它能产生一系列抗菌化合物,尤其是细菌素,有助于延长乳制品的保质期。细菌素是核糖体合成的肽,具有广谱或窄谱抗菌活性,因此在食品保鲜方面很有前景。LAB 细菌素的分类很复杂,反映了不断发展的基因组学见解和生物合成机制。将细菌素整合到乳制品中的策略包括纯化形式、产生细菌素的 LAB 和含细菌素的发酵物,每种策略都有不同的优势和注意事项。优化发酵条件(包括时间、温度、pH 值和培养基)对于最大限度地提高细菌素产量至关重要。这种优化有助于提高发酵乳制品的质量和安全性,符合消费者对天然、加工程度最低的食品日益增长的偏好。此外,将细菌素与热处理和非热处理结合到隔离方法中有望增强食品的生物保护,同时减少对化学防腐剂的依赖。本综述强调了乳酸菌素作为传统食品防腐剂的天然有效替代品的潜力,并提供了其在乳制品保存中的应用和优化见解。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2024年9月3日。 https://doi.org/10.1101/2024.09.09.03.609457 doi:Biorxiv Preprint
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。因此,对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模,针对选定的成核场景和从共晶到过共晶的合金成分,探索了共晶系统在定性对应于激光增材制造条件下的一般行为。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
近年来,已经研究了经常患病儿童的免疫学状况的特征。频繁和反复的呼吸道感染有助于身体的敏感,免疫反应性的降低,代偿性和适应性机制的破坏,有助于呼吸道的慢性炎症过程的发展,最终导致儿童的身体和神经学的影响[7,8]的细胞范围。大多数CBD揭示了血细胞。在免疫功能低下的儿童中,最常记录局部特异性和非特异性耐药性的变化(吞噬作用降低,补体水平,溶菌酶,分泌LGA2,LGA1,LGA1,IgM,IgG)