CD44 是一种细胞表面粘附受体和干细胞生物标志物,最近与慢性代谢疾病有关。CD44 的消融可改善肥胖中的脂肪组织炎症和胰岛素抵抗。在这里,我们研究了人类和小鼠脂肪组织中细胞类型特异性 CD44 的表达,并进一步研究了前脂肪细胞中的 CD44 如何调节脂肪细胞功能。使用 Crispr Cas9 介导的基因缺失和慢病毒介导的基因重新表达,我们发现 CD44 的缺失会促进脂肪细胞分化和脂肪生成,而 CD44 的重新表达会消除这种影响并降低 3T3-L1 细胞中的胰岛素反应和脂联素分泌。从机制上讲,CD44 通过抑制 Pparg 表达来实现这一点。通过定量蛋白质组学分析,我们进一步发现细胞周期调节通路大多因 CD44 的缺失而减少。事实上,CD44 的重新表达适度恢复了参与细胞周期所有阶段的蛋白质的表达。这些数据得到了 CD44 缺陷细胞中前脂肪细胞增殖率增加的进一步支持,而 CD44 的重新表达会削弱这种影响。我们的数据表明,CD44 在调节脂肪生成和脂肪细胞功能方面起着至关重要的作用,可能是通过调节 PPARγ 和细胞周期相关通路来实现的。这项研究首次提供了证据,表明在前脂肪细胞中表达的 CD44 在调节主要表达 CD44 的免疫细胞之外的脂肪细胞功能方面起着关键作用。因此,针对(前)脂肪细胞中的 CD44 可能为治疗肥胖相关的代谢并发症提供治疗潜力。
CD44 是一种细胞表面粘附受体和干细胞生物标志物,最近与慢性代谢疾病有关。CD44 的消融可改善肥胖中的脂肪组织炎症和胰岛素抵抗。在这里,我们研究了人类和小鼠脂肪组织中细胞类型特异性 CD44 的表达,并进一步研究了前脂肪细胞中的 CD44 如何调节脂肪细胞功能。使用 Crispr Cas9 介导的基因缺失和慢病毒介导的基因重新表达,我们发现 CD44 的缺失会促进脂肪细胞分化和脂肪生成,而 CD44 的重新表达会消除这种影响并降低 3T3-L1 细胞中的胰岛素反应和脂联素分泌。从机制上讲,CD44 通过抑制 Pparg 表达来实现这一点。通过定量蛋白质组学分析,我们进一步发现细胞周期调节通路大多因 CD44 的缺失而减少。事实上,CD44 的重新表达适度恢复了参与细胞周期所有阶段的蛋白质的表达。这些数据得到了 CD44 缺陷细胞中前脂肪细胞增殖率增加的进一步支持,而 CD44 的重新表达会削弱这种影响。我们的数据表明,CD44 在调节脂肪生成和脂肪细胞功能方面起着至关重要的作用,可能是通过调节 PPARγ 和细胞周期相关通路实现的。这项研究首次提供了证据,表明在前脂肪细胞中表达的 CD44 在调节主要表达 CD44 的免疫细胞之外的脂肪细胞功能方面起着关键作用。因此,针对(前)脂肪细胞中的 CD44 可能为治疗肥胖相关的代谢并发症提供治疗潜力。
用诸如Venetoclax之类的抑制剂靶向BCl2通常会导致癌细胞对其他促生物存在的Bcl2家族成员(例如MCL1)的依赖性,并且是对Bcl2抑制剂的固有和获得性抗性的常见机制。与CDK9抑制剂PRT2527与Venetoclax结合使用MCL1的间接靶向可以克服抵抗力,并导致血液恶性肿瘤中凋亡的协同诱导
摘要。背景/目标:由于缺乏有效的治疗靶标,恶性胸皮瘤(MPM)患者的预后仍然很差。长期暴露于石棉纤维引起的DNA损伤与MPM的发展有关,在编码DNA损伤修复(DDR)相关的分子的基因上发生突变,在MPM患者中经常表达。本研究旨在使用大型公共数据库(例如Cancer Genome Atlas(TCGA)(TCGA)和基因型组织表达项目(GTEX)鉴定MPM中的新型治疗靶标(GTEX)。材料和方法:在TCGA间皮瘤(TCGA-MESO)数据集中,在间皮瘤患者中分析了与DDR相关基因的mRNA表达水平与总生存率(OS)之间的相关性。随后在MPM细胞系中测试了小型干扰RNA(siRNA)对与OS相关的DDR相关基因的抗肿瘤作用。结果:高水平编码DNA聚合酶三角洲1,催化亚基(POLD1)的mRNA与MPM患者的OS降低显着相关(P <0.001,对数秩检验)。此外,靶向POLD1(SIPOLD1)的siRNA在G 1 /S检查点引起细胞周期停滞,并诱导凋亡,涉及MPM细胞系中DNA损伤积累的凋亡。结论:POLD1在MPM细胞中G 1 /S检查点上克服DNA损伤和细胞周期进程中起着至关重要的作用。这些发现表明Pold1可能是MPM中新型的治疗靶标。
[词汇表](※1)细胞周期一系列现象,当细胞产生两个子细胞时发生。有基因组DNA复制和分布,然后是细胞因子。细胞周期中有四个固定序列。这些称为G1,S,G2和M相。 (*2)基因组编辑这是指通过在靶序序中激活核酸酶(DNA裂解酶),从细胞核中存在的基因序列中的裂解基因改变。 CRISPR-CAS和其他工具用于基因组编辑。 (※3)CRISPR-CAS9称为Crisperpercas。最初,它是原核生物中获得的免疫力之一,并且具有切割外国基因的功能。通过应用此功能,创建了一个系统来削减真核基因并执行基因组编辑。 (*4)同源重组这是修复基因组DNA双链断裂的途径之一,而非同源重组路径仅连接断裂,当DNA与要修复的序列同源时(仅将其作为模板转换为模板的序列的一部分)被纳入Chromos中。 (※5)体内基因组编辑基因组编辑,直接涉及体内遗传裂解反应。使用mRNA和基于病毒的基因/蛋白质递送技术进行靶向细胞的基因组编辑。 (※6)靶基因切割后发生的基因修复反应之一的非同源末端结合。这种修复导致在靶基因位点插入或缺失几个碱基,从而影响蛋白质的表达等。(※7)离体基因组在体外均值均值,并指的是一种造血干细胞和其他物质的方法,其中从生物体和基因组编辑中取出了其他物质和基因组编辑的方法。它用于治疗遗传性血液学疾病。 (※8)基因敲除一种基因工程技术,涉及将功能不足的基因引入生物体。在蛋白质编码基因的情况下,它们的表达被完全抑制。 (※9)读取框架是指将DNA或RNA序列转换为氨基酸时的阅读框。用3个盐指定一个氨基酸序列。阅读框将变为读取完成的数组。 (※10)非目标行动是指与目标不同的站点上作用。在靶向基因时,它是指在类似于靶基因的序列上起作用的现象。 (※11)抗Crispr A由噬菌体拥有,用于抑制宿主的CRISPR-CAS并在宿主细胞中生存。 (※12)CDT1确保在细胞周期中精确发生染色体复制的许可调节器之一。复制一旦复制的控制染色体不会重新恢复。由于泛素依赖性降解,它的表达在G1相中很高,而在S相的表达很低。
箭头分别标记2,1(V bial = -2.0 V / -1.2 V,i = -50 pa / -200 pa)。c,来自282
目的:据报道,内皮菌落形成细胞(ECFC)在Moyamoya病(MMD)的发病机理中起重要作用。我们以前已经观察到具有小管形成功能障碍的MMD ECFC的停滞生长。我们旨在验证MMD ECFC功能缺陷所涉及的关键调节器和相关信号通路。方法:从健康志愿者(正常)和MMD患者的外周血单核细胞中培养ECFC。低密度脂蛋白摄取,流式细胞术,高含量筛选,与衰老相关的β-半乳糖苷酶,免疫荧光,细胞周期,小管形成,微阵列,实时定量聚合酶链链链,实时定量聚合酶链反应,小型干扰RNA转移和蛋白质布局及其蛋白质分析。结果:MMD患者中可以培养的细胞可以长期以来培养的细胞明显低于正常患者。与正常的ECFC相比,MMD ECFC与G1细胞周期停滞和细胞衰老的细胞增殖降低降低。途径富集分析表明,细胞周期途径是主要的富集途径,这与ECFC功能分析的结果一致。与细胞周期相关的基因,细胞周期蛋白依赖性激酶抑制剂2a(CDKN2A)在MMD ECFC中的表达最高。MMD ECFC中CDKN2A的敲低通过减少G1细胞周期停滞并通过调节CDK4和磷酸化视网膜细胞母细胞瘤蛋白来抑制衰老,从而增强了增殖。MMD ECFC中CDKN2A的敲低通过减少G1细胞周期停滞并通过调节CDK4和磷酸化视网膜细胞母细胞瘤蛋白来抑制衰老,从而增强了增殖。结论:我们的研究表明,CDKN2A通过诱导细胞周期停滞和衰老而在MMD ECFC的生长迟缓中起重要作用。
1癌症和血液学实验室(LOH),大学血液学和肿瘤学诊所,医学院(FMUC),科伊黑文大学,3000-548 Coimbra,葡萄牙; UC2013143376@student.uc.pt(B.S.L.); UC2018265624@student.uc.pt(M.I.C.); jjorge@fmed.uc.pt(J.J。); raquel.alves@fmed.uc.uc.pt(R.A.); ana.raquel.monteiro@sapo.pt(A.R.M.); absarmento@fmed.uc.uc.pt(A.B.S.-Mr。)2 Coimbra临床与生物医学研究所(ICBR),癌症生物学环境遗传学(CIMAGO)的群体(FMUC)(FMUC),Coimbra大学(FMUC),3000-548 COIMBRA,COIMBRA,COIMBRA,葡萄牙; beatriz.serambeque@student.uc.pt(B.S.); icarreira@fmed.uc.pt(i.m.c.)3创新生物医学与生物技术中心(CIBB),3004-504 Coimbra,Coimbra,葡萄牙4 Coimbra临床学术中心(CACC),3000-061 Coimbra,葡萄牙Coimbra,葡萄牙5基因组学实验室,医学学院(FMUC),科伊米布拉大学,3000-548 Coimbra,Coimbra,葡萄牙7血液学服务,医院中心和大学至里约热内卢Coimbra(CHUC),3000-061 Coimbra,Coimbra,葡萄牙 *通信 *通信电话。: +351-239-480-023
2.Matthew P. Goetz,Masakazu Toi等。Monarch 3:Abemaciclib作为晚期乳腺癌临床肿瘤学杂志的初始疗法。2017; 35(32); 3638-3646 3.George W. Sledge,Jr。,Masakazu Toi等。MONARCH 2:ABEMACICLIB与HR+/HER2-晚期乳腺癌女性的Abemaciclib结合使用,她在接受内分泌疗法杂志临床肿瘤学杂志时进展。2017; 35(25); 2875-2884 4.Maura N. Dickler,Sara M. Tolaney等。Monarch 1,Abemaciclib,CDK4和CDK6抑制剂的II期研究,作为一种药物,对难治性HR+/HER2-转移性乳腺癌临床癌症研究的患者。2017; 23(17); 5218-5224
Authors: Lianglong Sun 1,2,3 , Tengda Zhao 1,2,3, # , Xinyuan Liang 1,2,3,# , Mingrui Xia 1,2,3,# , Qiongling Li 1,2,3 , Xuhong Liao 4 , Gaolang Gong 1,2,3,5 , Qian Wang 1,2,3 , Chenxuan Pang 1,2,3 , Qian Yu 1,2,3 , Yanchao Bi 1,2,3,5 , Pindong Chen 6 , Rui Chen 1 , Yuan Chen 7 , Taolin Chen 8 , Jingliang Cheng 7 , Yuqi Cheng 9 , Zaixu Cui 5 , Zhengjia Dai 1,2,3 , Yao Deng 1 , Yuyin Ding 1 , Qi Dong 1 , Dingna Duan 1,2,3 , Jia-Hong Gao 10,11,12 , Qiyong Gong 8,13 , Ying Han 14 , Zaizhu Han 1,3 , Chu-Chung Huang 15 , Ruiwang Huang 1,3 , Ran Huo 16 , Lingjiang Li 17,18 , Ching-Po Lin 19,20,21 , Qixiang Lin 1,2,3 , Bangshan Liu 17,18 ,Chao Liu 1,3 , Ningyu Liu 1 , Ying Liu 16 , Yong Liu 22 , Jing Lu 1 , Leilei Ma 1 , Weiwei Men 10,11 , Shaozheng Qin 1,2,3,5 , Jiang Qiu 23,24 , Shijun Qiu 25 , Tianmei Si 26 , Shuping Tan 27 , Yanqing Tang 28 , Sha Tao 1 , Dawei Wang 29 , Fei Wang 28 , Jiali Wang 1 , Pan Wang 30 , Xiaoqin Wang 23,24 , Yanpei Wang 1 , Dongtao Wei 23,24 , Yankun Wu 26 , Peng Xie 31,32 , Xiufeng Xu 9 , Yuehua Xu 1,2,3 , Zhilei Xu 1,2,3 , Liyuan Yang 1,2,3 , Huishu Yuan 16 , Zilong Zeng 1,2,3 , Haibo Zhang 1 , Xi Zhang 33 , Gai Zhao 1 , Yanting Zheng 25 , Suyu Zhong 22 , Alzheimer's Disease Neuroimaging Initiative, Cam-CAN, Developing Human Connectome Project, DIDA-MDD Working Group, MCADI, NSPN, and Yong He 1,2,3,5,*