在植物中,NLR(核苷酸结合域和富含亮氨酸重复序列)蛋白通过形成聚集在质膜上的抗性小体来执行先天免疫。然而,NLR 抗性小体靶向其他细胞膜的程度尚不清楚。在这里,我们表明辅助 NLR NRG1 与多个细胞器膜结合以触发先天免疫。与其他辅助 NLR 相比,NRG1 和密切相关的 RPW8 样 NLR(CC R -NLR)具有延长的 N 端和独特的序列特征,使它们能够组装成比典型的卷曲螺旋 NLR(CC-NLR)抗性小体更长的结构。活化的 NRG1 通过其 N 端 RPW8 样结构域与单膜和双膜细胞器结合。我们的研究结果表明,植物 NLR 抗性小体在各种细胞膜位点聚集以激活免疫。
尽管缺乏对潜在生物物理机制的明确了解,但鸽子感知地磁场的能力已得到最终证实。鸽子耳蜗中的准球形铁细胞器以前被称为“角质体”,由于其位置和铁成分,与磁感应具有潜在相关性;然而,目前有关这些结构的磁化率的数据有限。这里应用量子磁成像技术来表征单个铁角质体的原位磁性。从角质体发出的杂散磁场被映射并与详细的分析模型进行比较,以提供单个粒子的磁化率估计值。图像显示单个角质体内存在超顺磁性和亚铁磁性域,磁化率在 0.029 到 0.22 范围内。这些结果为了解角质体难以捉摸的生理作用提供了见解。测量的磁化率与基于扭矩的磁感应模型不一致,将铁储存和静纤毛稳定作为两个主要的假定角质体功能。这项研究确立了量子磁成像作为一种重要工具,可以补充现有的一系列用于筛选潜在磁性粒子磁受体候选物的技术。
转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。
这是一篇文章的PDF文件,该文件在接受后经历了增强功能,例如添加了封面和元数据,并为可读性而格式化,但尚未确定记录的确定版本。此版本将在以最终形式发布之前进行其他复制,排版和审查,但是我们正在提供此版本以赋予本文的早期可见性。请注意,在生产过程中,可能会发现可能影响内容的错误,以及适用于期刊的所有法律免责声明。
越来越多的证据表明,细胞可以通过产生具有明确定义的介观性能的无膜室来调节时间和空间的生化功能。该控制的基础基础的一种重要机制是由编码多价相互作用的联想无序蛋白驱动的简单共凝作。受这些观察结果的启发,基于对响应式合成聚合物的简单共凝聚的可编程液滴,这些聚合物模仿了生物无序蛋白的“贴纸和间隔者”结构。zwitterionic聚合物,并形成液滴,这些液滴明显地排除了大多数分子。从该参考材料开始,Zwitterionic聚合物中的不同函数组可以从添加添加,以编码越来越多的不同分子间相互作用。这种策略允许独立控制液滴的多个新兴特性,例如刺激反应性,极性,选择性吸收客户分子,融合时间和混杂性。通过利用这种高的可编程性,重现了细胞隔室的模型,并产生能够限制空间中不同分子而没有物理屏障的液滴。此外,这些生物分子分类器也被证明能够定位,分离和使靶分子在复杂的混合物中,在生物序列化和诊断方面开放了吸引力的应用。
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。
RNA 和蛋白质的凝聚是细胞功能的核心,对其进行编程的能力在合成生物学和合成细胞科学中将非常有价值。在这里,我们介绍了一个模块化平台,用于从定制的、可折叠和共转录组装的分支 RNA 纳米结构中设计合成 RNA 凝聚物。最多可同时形成三种正交凝聚物,并通过嵌入的荧光发光适体选择性地积累荧光团。RNA 凝聚物可以在合成细胞内表达,以产生具有可控数量和相对大小的无膜细胞器,并显示出使用选择性蛋白质结合适体捕获蛋白质的能力。可以通过引入专用的连接体构造来调节原本正交的纳米结构之间的亲和力,从而能够产生具有规定程度的相间混合和多种形态的双相 RNA 凝聚物。可编程 RNA 凝聚物的原位表达可以为生物细胞和合成细胞中功能的空间组织奠定基础。
1. Ferrarini M、Moretto M、Ward JA、Surbanovski N、Stevanovic V、Giongo L、Viola 88 R、Cavalieri D、Velasco R、Cestaro A、Sargent DJ。2013 年。对 89 PacBio RS 平台进行叶绿体基因组测序和从头组装的评估。BMC 基因组学 14:670。91 2. Stadermann KB、Weisshaar B、Holtgräwe D。2015 年。仅 SMRT 测序甜菜 (Beta vulgaris) 叶绿体基因组的从头组装。BMC 93 生物信息学 16:295。 94 3. Pucker B、Holtgräwe D、Stadermann KB、Frey K、Huettel B、Reinhardt R、95 Weisshaar B。2019 年。染色体水平序列组装揭示了拟南芥 Nd-1 基因组及其基因集的结构。PLoS One 97 14:e0216233。98 4. Altschul SF、Gish W、Miller W、Myers EW、Lipman DJ。1990 年。基本局部比对搜索工具。分子生物学杂志 215:403-410。100 5. Koren S、Walenz BP、Berlin K、Miller JR、Bergman NH、Phillippy AM。2017 年。Canu:通过自适应 k-mer 加权和 102 重复分离实现可扩展且准确的长读组装。基因组研究 27:722-736。103 6. Jansen RK、Kaittanis C、Saski C、Lee SB、Tomkins J、Alverson AJ、Daniell H. 2006. 基于完整叶绿体基因组序列的葡萄科(Vitaceae)系统发育分析:分类单元抽样和系统发育方法对解决蔷薇科间关系的影响。BMC 进化生物学 6:32。107 7. Goremykin VV、Salamini F、Velasco R、Viola R. 2009. 葡萄的线粒体 DNA 和猖獗的水平基因转移问题。分子生物学与进化 26:99-110。110 8. Wick RR、Schultz MB、Zobel J、Holt KE。 2015. Bandage:从头基因组组装的交互式可视化。生物信息学 31:3350-2。112 9. Wheeler TJ、Eddy SR。2013. nhmmer:使用概要 HMM 进行 DNA 同源性搜索。113 生物信息学 29:2487-2489。114 10. Chan PP、Lowe TM。2019. tRNAscan-SE:在基因组序列中搜索 tRNA 基因,第 1-14 页。在 Kollmar M(编辑)的《基因预测:方法和协议》中,116 2019/04/26 编辑,第 1962 卷。Springer New York,纽约。117 11. Lowe TM、Eddy SR。 1997. tRNAscan-SE:一种改进基因组序列中 118 种转移 RNA 基因检测的程序。核酸研究 25:955-964。119 12. Laslett D、Canback B。2004. ARAGORN,一种检测核苷酸序列中的 tRNA 基因和 120 种 tmRNA 基因的程序。核酸研究 32:11-16。121 13. Tillich M、Lehwark P、Pellizzer T、Ulbricht-Jones ES、Fischer A、Bock R、Greiner 122 S。2017. GeSeq - 多功能且准确的细胞器基因组注释。123 核酸研究 45:W6-W11。 124 14. Lohse M、Drechsel O、Kahlau S、Bock R. 2013. OrganellarGenomeDRAW——一套用于生成质体和线粒体基因组物理图谱并可视化表达数据集的工具。核酸研究 41:W575-581。127 15. Lohse M、Drechsel O、Bock R. 2007. OrganellarGenomeDRAW (OGDRAW):128 一个用于轻松生成高质量自定义质体和 129 线粒体基因组图形图的工具。当代遗传学 52:267-274。130
菊花含量,东亚本地的一种物种众所周知,是耕种的菊花的祖细胞之一,该物种以其观念和药用价值而生长。先前关于菊花的基因组研究在分析该植物谱系时,很大程度上忽略了质体基因组(质体)和线粒体基因组(有丝分裂基因组)的动力学。在这项研究中,我们测序并组装了二倍体和四倍体C的质体和有丝分裂组。芳香。我们使用了来自27种具有质体和有丝分裂组完整序列的数据,以探索细胞器基因组之间序列演化的差异。二倍体和四倍体C中的细胞器基因组的大小和结构通常相似,但四倍体C. indimum和C. indimum var。芳香族在有丝分裂组中包含独特的序列,这些序列还包含先前未描述的开放式阅读框(ORF)。跨菊花有丝分裂组的结构变化很大,但是从质体转移到有丝分裂基因组的序列得到了保存。最后,有丝分裂基因组和质子基因树之间观察到的差异可能是这两个基因组中基因之间序列演化速率差异的结果。总共提出的发现大大扩展了研究菊花细胞器基因组进化的资源,并可能在将来可以应用于保护,育种和基因库。
细胞多样化是在Ontog-Eny期间获得的系统发育中增加多细胞生物复杂性的基础。然而,所有细胞也有共同的功能,例如细胞分裂,细胞迁移,翻译,内吞,胞吐作用等。在这里,我们重新审视了这种常见功能所涉及的细胞器,回顾了这些细胞器中蛋白质意外差异的最新证据。例如,中心体或线粒体在不同的,有时是密切相关的细胞类型中的蛋白质组成上有显着差异。这与发育和疾病有关。特别引人注目的是这些和其他细胞器中RNA结合蛋白的大量和多样性,这使我们能够回顾不同细胞器和亚尺寸层中RNA的证据。我们包括有关转化涉及的(子)细胞器(例如核仁和核糖体)的讨论,还报道了意外的细胞类型特异性多样性。我们在这里提出,这些细胞器和隔室的异质性代表了调节细胞多样性的新机制。一个原因是,蛋白质功能可以乘以它们在不同的或范围内的不同贡献,也可以用具有月光功能的蛋白质来体现。专门的细胞器仍执行泛素函数,但在细胞类型特异性模式下,此处讨论了中心体,线粒体,小囊泡和其他或其他或其他或其他或其他或其他效果。这些可以用作用于存储和运输特定且功能上重要的调节器的调节中心。通过这种方式,它们可以控制细胞分化,质量和生存。我们进一步包括强调疾病相关性的例子,并提议在许多细胞类型中检查细胞器中的细胞器,以使其具有功能相关性的可能区别。