转化和生物学,但现在已扩展到基于纳米材料(NM)载体的使用。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。 13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。 尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。 在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。 然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。 我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。 尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。11,12更重要的是,在动物细胞中已经证明了靶向亚细胞细胞器的能力,但是由于复杂的植物细胞环境和细胞壁的存在,植物内的挑战面临进一步的挑战。13,14这是叶绿体和线粒体的高拷贝数进一步加剧的,这对于植物中的代谢至关重要。尽管有这些挑战,但在调整NM介导的细胞器选择靶向输送方面取得了进展。在本专题文章中,我们回顾了植物内的主要细胞器靶标以及植物细胞器递送的相关挑战,重点是防止有效递送的物理和化学障碍。然后,我们检查了在植物细胞中表现出货物的递送和吸收的主要类别,这些NMS基于其理化特性,从而突出了其细胞器特异性。我们还专门概述了植物细胞器转化的三个主要目标:核,线粒体和叶绿体。尽管其他一些评论文章已广泛地介绍了NM介导的植物递送的话题,但我们旨在提供有关细胞器靶向的递送方法的全面概述,这些方法对植物生物工程的高度相关。