基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
腺病毒5 WA蛋白复合物是从病毒体中分离出来的,作为双链wra分子,由每条链的5'末端共同连接到Imknawn功能的Virion蛋白上。可以用大肠杆菌异核酸酶III消化WA-蛋白质复合物,以产生类似于WA复制中间体的NOLECULES,因为它们包含长长的单个绞线区域,以5'tenmini结合到最高的蛋白质。非核酸酶III消化大大降低了原酶消化腺病毒5 WNA的感染性。hawever,当至少2400个核苷酸被重重载时,KA蛋白复合物的感染性不会显着改变。这表明末端蛋白可以通过细胞外切核酸酶保护5'终止的单链fran消化。DNA-蛋白质复型从宿主范围突变体制备,其左4%的突变映射与外切核酸外切酶III消化,与野生型限制性片段杂交,将左8%的GENANE片段与HELA细胞旋转。具有野生型表型的病毒以高频回收。
最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]
抽象脂质体是可以封装各种药物的多功能载体。但是,要向大脑传递,必须通过靶向配体或其他修饰进行修饰,以提供血脑屏障(BBB)的渗透性,同时避免通过聚乙烯甘油(PEG)修饰通过网状内皮系统快速清除。BBB渗透肽充当脑靶向配体。在这项研究中,为了实现脂质体有效的大脑递送,我们基于使用体外BBB通透性评估系统的高通量定量评估方法,筛选了先前报道的八个BBB渗透肽的功能,该方法使用Transwell,在原位脑灌注系统等。For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine–glycine (SG) 5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were准备。apoEDP修饰的卵子脂质体有效地与人脑毛细血管内皮细胞通过ApoEDP序列有效相关,并在体外BBB模型中渗透了膜。此外,在大脑中积累的apoEDP修饰的卵形脂质体比小鼠中的脂肪体高3.9倍。此外,通过三维成像和组织清除,证明了apoEDP修饰的pe乙型脂质体在小鼠中局部将BBB局部局部到脑实质中的能力。这些结果表明,ApoEDP-SG脂质修饰是一种有效的方法,它可以赋予具有脑靶向能力和BBB渗透性的质脂质体。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
胚胎干细胞通过形成细菌层具有多能力的潜力和自我恢复能力,从而为胚胎发生提供了主要贡献。这些干细胞多能的保留取决于转录因子的表达/水平,即SOX2,OCT4和NANOG。在器官发生过程中,分子的表达变化也会影响这些干细胞失去多能性并转向谱系选择。随着分化的进展,包括口腔鳞状细胞在内的体细胞的维持也取决于转录因子的差异表达。最近,许多实验性和观察性研究记录了各种人类癌症的致癌作用的重要贡献。在这篇综述中,我们试图总结说明这些主要多能调节剂在口服癌变阶段的推定作用的证据,即口服鳞状细胞癌的起始,进展和预后。
Shi,Shaoshuai等。“运动变压器具有全球意图定位和本地运动的重新构成”。2022。Shi,Shaoshuai等。“ MTR ++:具有对称场景建模和指导意图查询的多代理运动预测。”2023。
乳腺癌(BC)是全世界第二常见的癌症,是女性癌症与癌症与癌症有关的第二大原因。[1]在过去的三十年中,研究使人们对疾病的多方面分子异质性有了更好的了解。发现人表皮生长因子受体2(HER2)(也称为表皮生长因子受体或ERB -B),一种膜酪氨酸激酶和癌基因,是如此重要的发现。[2,3] Slamon等。表明,HER2基因的扩增在BC中相对较少发生,并且与疾病复发和患者总体存活减少有关。[2] HER2蛋白通过激活磷脂酰肌醇3-激酶(PI3K) - 蛋白质激酶B(AKT) - 甲状腺霉素靶靶标的磷脂酰肌醇3-激酶(PI3K) - RAS -RAS -RAS -RAS -RAS -RAS -MEK -MEK -MEK -MEK -ERK1/2途径。[4,5]
