在1984年,沃恩·琼斯(Vaughan Jones)[琼斯5]发现了康威(Conway)绞线的一种变体,这引起了一个新的不变,现在称为琼斯多项式。琼斯通过研究用于统计力学中的代数为templeley-lieb代数的代数的特性,发现了他的不变。他从自己对von Neumann代数的深入研究中重新发现了Temperley-Lieb代数,与量子力学密切相关,Jones Construction被HOM FLOP概括了。这是Hoste,Ocneanu,Millett,Freyd,Lick-Orish,Yetter,Przytycki和Trawczk的首字母缩写。这些数学家听到了琼斯的早期讲座。他们发现了琼斯多项式的两个可变概括,当然被称为hom fl ypt ypt多项式。琼斯表明,他的新多项式满足了类似于康威(Conway)关系的绞线关系。他证明了
1.1.1.3 本规范生效前签订建造合同的船舶应符合各船级社的规范。注:“签订建造合同”日期系指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅 IACS 程序要求 (PR) 第 29 条。
1.1.1.3 本规范生效前签订建造合同的船舶应符合各船级社的规范。注:“签订建造合同”日期系指未来船东与造船厂签订船舶建造合同的日期。有关“签订建造合同”日期的更多详细信息,请参阅 IACS 程序要求 (PR) 第 29 条。
摘要:我们对以色列埃拉特高盐度盐场池塘(盐度 280 至 290 g 1-0)底部石膏壳内发育的蓝藻和紫色细菌分层群落进行了描述。石膏壳厚 4 至 5 厘米,上部 1 至 2 厘米处栖息着富含类胡萝卜素的单细胞蓝藻(Aphanothece sp. 等),使石膏呈现橙棕色。在棕色层下面,发现了一个绿色层,主要由 Synechococcus 属的单细胞蓝藻组成,丝状 Phormidjum 型蓝藻是次要成分。在这些产氧光养生物层下面是一层红色的紫色细菌层。我们研究了石膏壳的光学特性,通过表征不同层中存在的色素并测量光谱标量使用光纤微探针测量地壳不同深度的辐射度。在地壳上部 2 毫米处,测量到的最大标量辐射度高达入射光的 200%。光谱蓝色范围(400 至 500 纳米)的光被上部棕色层中的保护性胡萝卜素(蓝黄素、海胆酮等)有效吸收。然而,光谱红色部分中大量的光穿透到绿色层,从而实现光合作用:620 和 675 纳米处约 1% 的入射辐射度到达深度为 15 毫米的绿色层,光谱红外部分中 >1% 的入射光到达深度为 20 至 23 毫米的紫色细菌。
阴影区域监测 第一个 Kilnscan 具有黄色视野,用于测量位于建筑物内部的窑炉部分的温度。可以注意到扫描仪与窑壳之间的距离仅为 4.3 米。由于 140° 视野扫描仪,实现了这一短瞄准距离限制。第二个和第三个扫描仪旨在扫描窑壳的同一部分,并特别解决沿着窑炉这一部分延伸的阴影区域问题。然后通过结合这两个扫描仪的数据重建热图像,消除阴影,从而完美地全面监测窑壳。
D-Sub 轻型后壳是保护重量和空间受限的太空应用中的连接器和电缆的关键元件。我们现在提供兼容 Haloring 的 D-Sub 轻型后壳新版本,可满足客户在需要屏蔽的应用中的需求。
摘要我们介绍了Mesogan,这是一种生成3D神经纹理的模型。通过结合生成对抗网络(stylegan)和体积神经场渲染的优势,这种新的图形原始形式代表了中尺度的出现。原始性可以用作神经反射率壳的表面;表面上方的薄体积层,其外观参数由神经网络定义。为了构建神经外壳,我们首先使用带有仔细随机傅立叶特征的stylegan生成2D特征纹理,以支持任意尺寸的纹理而无需重复伪影。我们以学习的高度功能增强了2D功能纹理,这有助于神经场渲染器从2D纹理产生体积参数。为了促进过滤,并在当前硬件的内存约束中启用端到端培训,我们使用了层次结构纹理方法,并将模型训练在3D中尺度结构的多尺度合成数据集上。我们提出了一种在艺术参数上调节Mesogan的可能方法(例如,纤维长度,链的密度,照明方向),并演示并讨论整合基于物理的渲染器。
4.1 测地线追踪离散化 ................................................................................................................................................ 66 4.2 通过几何程序进行测地线追踪 ................................................................................................................................ 67 4.3 使用优化程序进行测地线追踪 ............................................................................................................................. 72 4.4 地图要求 ...................................................................................................................................................... 77 4.5 地图概念 ............................................................................................................................................................. 78 4.6 地图详述 ............................................................................................................................................................. 80 4.7 唯一性问题 ............................................................................................................................................................. 86 4.8 追踪测地线的精度要求 ............................................................................................................................. 87 4.9 初步验证的图版集 ............................................................................................................................................. 88 4.10 比较验证 .............................................................................................................................................