需要支持多种机械和生物功能(如实现液体运输、促进再生和修复、抵抗不确定和随时间变化的机械需求)。[1–3] Wolf-Roux(机械稳态)定律表明,骨骼会随着机械需求的变化而沉积或吸收,[1,4,5] 指出优化在多尺度材料和结构的自然设计中发挥着作用。因此,结构优化是追求性能优化的仿生工程系统的一种很有吸引力的策略;然而,自然界中观察到的一系列功能极难完全融入基于优化的工程设计过程中。在这里,我们赋予结构优化方法和旋节线结构材料,这些材料模仿自然界中观察到的几种微观结构特征,这样我们就可以直接以设计中的刚度和轻量化为目标,并间接促进由微观尺度上的旋节线孔隙度和随机性促进的其他机械和生物功能。图1显示了在几种生物系统中观察到的微结构,这些微结构具有不同的孔径、孔形、密度和方向偏好,这些特征可以通过旋节线结构材料轻松模仿。旋节线结构材料是通过将旋节线相分解中的一个相解释为微结构材料而获得的。它们的非结构化、随机微结构特征已被证明可实现理想的工程性能(例如高机械弹性[9]、高能量吸收[10]和对缺陷不敏感[11]),这些性能通常超过结构化结构材料(例如桁架和板晶格)。此外,以高斯随机场(GRF)形式对旋节线相分解进行函数近似[12,13]可以广泛可调微尺度各向异性和孔隙率,从而实现显著的微结构设计自由。 [6] 底层函数表示也使得在任意方向和孔隙度的不同旋节线类(例如,图 1 中所示的各向同性、立方、层状和柱状结构)之间转换变得轻而易举。因此,旋节线结构材料为工程部件提供了一种途径,这些部件具有嵌入的、空间变化的微尺度特征,与结构化结构材料相比,这些特征提高了工程性能并增强了可制造性。旋节线结构材料的制造多功能性还使人们能够回归经典的多尺度
免责声明本报告是作为美国政府机构赞助的工作的帐户。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。 以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。 本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Sai Praneeth Thota, 1, 2,* Partha Pratim Bag, 1 Praveen Venkata Vadlani 3 和 Siva Kumar Belliraj 2, 4,* 摘要 利用植物基生物资源探索和开发用于长期可持续能源存储的新型纳米材料,可以提高能源供应市场的成本竞争力和减少环境影响,并满足绿色和可持续发展战略的迫切需求。 能源存储领域的最新研究趋势是专注于存储设备,包括超级电容器 (SC)、锂离子电池、燃料电池和铅酸电池。 超级电容器因其在功率和能量密度方面的卓越性能以及延长的使用寿命和在电动汽车、便携式电子设备以及固定电网等应用中的简便操作条件而具有吸引力。 由于超级电容器是由不可再生和化石资源构成的,因此迫切需要替代有效的材料。 来自可再生生物质来源的多维高孔隙率纳米结构碳可能是超级电容器电极材料的有前途的更绿色替代品。在 SC 中,源自生物质的多孔纳米碳充当电极表面的导电层。电导率、电解质的可及性、孔结构和形状、孔径分布以及高表面积对 SC 的比电容起着重要作用。本综述包括用于 SC 专用储能设备的生物质衍生多维纳米碳电极材料的最新研究平台及其未来前景。
Noemi Gallucci,Maryam Hmoudah,EugénieMartinez,Amjad El-Qanni,Martino Di Serio等。使用CEO2纳米结构材料对布洛芬的光降解:反应动力学,建模和热力学。环境化学工程杂志,2022,10(3),pp.107866。10.1016/j.jece.2022.107866。CEA-04565951
摘要:天然生物聚合物已成为准备生物降解食品包装的关键参与者。然而,生物聚合物通常是高度亲水性的,这在与水相互作用相关的屏障特性方面施加了限制。在这里,我们使用多层设计增强了生物基包装的屏障特性,其中每一层都显示一个互补的屏障函数。氧气,水蒸气和紫外线屏障。我们首先设计了几种包含CNF和Carnauba蜡的设计。在其中,我们在包含三层的组装中获得了低水蒸气的渗透率,即CNF/Wax/CNF,其中蜡作为连续层存在。然后,我们在几丁质纳米纤维(LPCHNF)上掺入了一层木质素纳米颗粒,以在维持紫外线的同时引入完全屏障,同时保持纤维透明度。包括CNF/Wax/LPCHNF的多层设计启用了高氧(OTR为3±1 cm 3/m 2·Day)和水蒸气(WVTR为6±1 g/m 2·天),以50%的相对湿度为50%。它也对石油穿透也有效。氧气渗透性受纤维素和几丁质纳米纤维的紧密网络的控制,而通过组装的水蒸气散析则由连续的蜡层调节。最后,我们展示了我们的完全可再生包装材料,以保存商业饼干(干粮)的质地。我们的材料显示出与原始包装相似的功能,该功能由合成聚合物组成。关键字:纤维素纳米纤维,蜡,木质素颗粒,分层生物聚合物,可持续纤维,生物基包装■简介
民用聚变需要能够承受聚变等离子体反应堆内部恶劣环境的结构材料。结构材料通常在 14.1 MeV 快中子下嬗变,产生氦 (He),而氦会使晶界 (GB) 网络变脆。本文表明,具有原子级自由体积的中子友好且机械强度高的纳米相可以具有低 He 嵌入能 emb 和 > 10 at.% He 吸收能力,并且在抵抗辐射损伤和蠕变的基础上特别有利于吸收 He,前提是它们具有与基质相的热力学兼容性、令人满意的平衡润湿角以及足够高的熔点。初步实验证明, emb 是纳米异相材料中 He 屏蔽效力的良好从头算预测因子,因此, emb 被用作计算筛选的关键特征。在此背景下,列出了一系列有望成为良好 He 吸收纳米相的可行化合物,其中考虑了 emb 、中子吸收和活化截面、弹性模量、熔化温度、热力学兼容性以及纳米相的平衡润湿角(以 Fe 基质为例)。
专注于增材制造 通过 3D 打印熔融沉积建模制造的先进结构材料的局部尺度断裂表征 Joseph Marae Djouda ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 joseph.marae_djouda@epf.fr Donato Gallittelli、Marouene Zouaoui、Ali Makke、Julien Gardan ERMESS,EPF 工程学院,2 rue Fernand Sastre,特鲁瓦,法国 donato.gallitelli@gmail.com marouene.zouaoui@utt.fr almak_21@hotmail.com Julien.Gardan@epf.fr Naman Recho ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国克莱蒙奥弗涅大学,帕斯卡研究所 CNRS-UMR 6602,PB 10448,63000 克莱蒙费朗,法国。 Naman.Recho@epf.fr Jérôme Crépin 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 jerome.crepin@mines-paristech.fr
材料在一次使用后就会永久损坏,不适合重复使用。最近,结构材料 (或超材料) 被设计成通过弹性屈曲不稳定性来捕获能量。[1–5] 这种结构能量捕获机制具有可扩展性和可逆性,使结构材料可重复使用。[3] 尽管如此,弹性能量捕获机制具有固定的能量吸收能力,而与应变率无关。[3] 希望开发一种可重复使用的结构材料,这种材料在很宽的应变率范围内表现出更大的能量吸收能力,以增强振动和冲击保护性能。为了实现这一目标,我们假设可以通过结合速率相关的材料耗散机制来增强结构材料的能量吸收能力。 [3,6–8] 虽然结构材料的概念是基于材料和几何形状之间的相互作用,但大多数研究都集中在机械不稳定性而非材料非弹性的非线性效应上。[5] 最近,很少有研究应用粘弹性来调节多稳态超材料的屈曲模式。例如,Janbaz 等人 [9] 展示了如何使用由两个横向连接的梁组成的双梁来实现应变率相关的机械超材料,其中一个是超弹性的,另一个是粘超弹性的。
摘要:纳米技术由于其独特和明显的影响而渗透了所有部门,这为科学界带来了医疗,农业和其他领域的众多突破。纳米材料(NMS)由于其可调节的物理,化学和生物学特征以及在散装等效物上的出色表现,因此在技术突破中的突出表现出色。nms根据大小,组成,上限代理,形式和来源分为许多类别。预测NMS独特功能的能力提高了每个分类的价值。随着NMS和工业用途的制造,其需求也会增长。本综述的目的是比较合成和天然存在的纳米颗粒和纳米结构材料,以确定其纳米级特征,并确定与纳米颗粒和纳米结构材料的环境应用有关的特定知识差距。论文评论包括NMS的历史和分类以及许多纳米颗粒以及自然和制造的纳米结构材料来源。此外,纳米颗粒和纳米结构材料的许多应用。