需要支持多种机械和生物功能(如实现液体运输、促进再生和修复、抵抗不确定和随时间变化的机械需求)。[1–3] Wolf-Roux(机械稳态)定律表明,骨骼会随着机械需求的变化而沉积或吸收,[1,4,5] 指出优化在多尺度材料和结构的自然设计中发挥着作用。因此,结构优化是追求性能优化的仿生工程系统的一种很有吸引力的策略;然而,自然界中观察到的一系列功能极难完全融入基于优化的工程设计过程中。在这里,我们赋予结构优化方法和旋节线结构材料,这些材料模仿自然界中观察到的几种微观结构特征,这样我们就可以直接以设计中的刚度和轻量化为目标,并间接促进由微观尺度上的旋节线孔隙度和随机性促进的其他机械和生物功能。图1显示了在几种生物系统中观察到的微结构,这些微结构具有不同的孔径、孔形、密度和方向偏好,这些特征可以通过旋节线结构材料轻松模仿。旋节线结构材料是通过将旋节线相分解中的一个相解释为微结构材料而获得的。它们的非结构化、随机微结构特征已被证明可实现理想的工程性能(例如高机械弹性[9]、高能量吸收[10]和对缺陷不敏感[11]),这些性能通常超过结构化结构材料(例如桁架和板晶格)。此外,以高斯随机场(GRF)形式对旋节线相分解进行函数近似[12,13]可以广泛可调微尺度各向异性和孔隙率,从而实现显著的微结构设计自由。 [6] 底层函数表示也使得在任意方向和孔隙度的不同旋节线类(例如,图 1 中所示的各向同性、立方、层状和柱状结构)之间转换变得轻而易举。因此,旋节线结构材料为工程部件提供了一种途径,这些部件具有嵌入的、空间变化的微尺度特征,与结构化结构材料相比,这些特征提高了工程性能并增强了可制造性。旋节线结构材料的制造多功能性还使人们能够回归经典的多尺度
可再生能源的转换和储存是我们实现从化石燃料经济向低碳社会转型的迫切挑战。我很难想象,如果没有材料科学和技术的进一步突破,这场革命会如何发生。事实上,当代材料史凸显了许多改变游戏规则的材料,这些材料对我们的生活产生了深远的影响,并有助于减少二氧化碳排放。高效光伏电池、蓝色发光二极管和锂离子电池阴极是基于知识的材料发展最具启发性的例子,它们经历了指数级的市场渗透,并获得了最高的科学奖项。这些成功案例与材料科学中的许多其他案例一样,都是建立在对纳米级相互关联的过程进行定制控制的基础上的,例如电荷激发、电荷传输和复合、离子扩散、插层以及物质和电荷的界面转移。纳米结构材料由于其超小的构造块和较高的界面体积比,为那些希望提高材料的能量转换效率或功率和能量密度的科学家提供了丰富的工具箱。纳米科学使材料定制工具的例子包括:(i)快速分离和收集光激发电荷,避免复合问题;(ii)由于表面积大而具有高催化活性;(iii)加速离子和原子沿纳米晶体界面的扩散,以及(iv)由于纳米结构表面的低反射率而增强的光收集。此外,纳米粒子(NPs)中还会出现新现象,例如表面等离子体共振,它极大地改变了金属和电磁场之间的相互作用,超顺磁性,将铁磁粒子变成集体顺磁体,以及激子约束,这会导致半导体量子点的尺寸相关颜色。本期特刊发表的 10 篇文章展示了纳米材料在能量存储和转换领域的不同应用,包括锂离子电池 (LIB) 电极及其他应用 [ 1 – 3 ]、光伏材料 [ 4 – 6 ]、热释电能量收集 [ 7 ] 和 (光) 催化过程 [ 8 – 10 ]。以下简要总结了这些科学贡献。目前正在研究用于替代 LIBs 中石墨的三种主要阳极材料:(i) 新型碳质材料,(ii) 转化型过渡金属化合物,以及 (iii) Si 和 Sn 基阳极。Dai 等人报道了通过脉冲激光沉积在纳米多孔氧化铝模板上制备的有序 SnO 2 纳米柱阵列的电化学性能,并用作 LIBs 的转化型阳极 [ 1 ]。有序的纳米柱结构为锂化/脱锂过程中的体积膨胀提供了充足的空间,提供了一种缓解影响转化型阳极的性能下降的策略。改进的结构完整性和稳定性使其在 1100/6500 次循环后仍能保持 524/313 mAh/g 的高比容量。在 Azib 等人的研究中,Si/Ni 3.4 Sn 4 复合阳极中 Si 纳米粒子的表面化学性质通过碳或氧化物涂层进行改性 [ 2 ]。在通过球磨制备复合材料的过程中,涂层大大降低了 Si 和 Ni 3.4 Sn 4 之间的反应。碳涂覆的 Si 粒子具有更好的锂化性能,可以提供超过
Professor 06/2009-Present Centre EMT, INRS Varennes, Canada Visiting Professor 12/2008 – 05/2009 University of Western Australia Perth, Australia Associate Professor 06/2004 – 05/2009 Centre EMT, INRS Varennes, Canada Visiting Professor 02/2008 Nanyang Technological University Singapore Visiting Scientist 11/2007 CNR-ISC Rome, Italy Visiting Professor 07/2007 NUSNNI, National University of Singapore Singapore Visiting Professor 11/2006 – 02/2007 ISSP, University of Tokyo Kashiwa, Japan Visiting Scientist 09/2006 CNR–INFM–TASC Trieste, Italy Visiting Professor 01/2005 CQCT, University of New South Wales Sydney, Australia Assistant Professor 05/2002 – 05/2004 Center EMT,INRS VARENNES,加拿大邮政 - 多克特尔研究员11/2000 - 04/2002原子量表材料中心物理,Aarhus Aarhus大学,丹麦
摘要:最近的文献中缺乏关于结构材料和尺寸对其固有频率影响的研究。本文的主要目的是研究材料特性对结构固有频率的影响。本研究采用了五种在工程应用中最为常用的材料(钢、混凝土、木材、塑料和铝)。针对每种材料设计和构建了一个模糊系统。它用于优化与结构高度和面积相关的固有频率值。结果表明,虽然结构高度对其固有频率有很大影响,但材料类型和结构面积也是有效变量。对于相同尺寸的结构,木材的固有频率值最高,其次是钢材,其次是混凝土。此外,还根据风、地震和交通振动对结构的固有频率进行了评估。这些结果可以为工程和设计目的提供有用的应用和建议。木材可以补充一系列材料的自然属性。本研究的启示可用于重型机械实验室、建筑结构和其他工程应用。
坚固而坚韧的材料是轻量化、节能应用(如电动汽车和航空航天应用)所必需的。最近发现,异质结构具有前所未有的强度和延展性,这在我们的教科书中的材料科学中被认为是不可能实现的。如此优异的机械性能是由一项新的科学原理实现的:异质变形诱导 (HDI) 强化和加工硬化。异质结构 (HS) 材料由流动应力相差巨大(> 100%)的异质区域组成。区域间相互作用在软区域产生背向应力,在硬区域产生正向应力,从而共同产生 HDI 应力。HS 材料具有显著的协同效应,其综合性能超出了混合物规则的预测。重要的是,HS 材料可以通过现有的工业设施大规模低成本生产。新材料科学和有前景的应用正在推动 HS 材料作为一个新兴领域的快速发展。为了有效地设计出性能优越的 HS 材料,有许多基本问题需要探究。要解决这些问题,需要实验材料科学、计算材料科学和力学界的共同努力。
摘要在纳米材料力学实验室和俄罗斯科学学院机械工程学研究所的纳米材料力学和缺陷理论中对研究活动进行了简要综述。它涵盖了旨在解释和理论描述这些材料机械行为的以下特征:与错位的经典Hall-Petch法律,同质和异构的成核的偏差,晶粒边界滑动,其适应性的机制以及其适应性,旋转变形,旋转变形,变形二,变形的晶粒和范围的机制,以及相互作用的范围和相互作用。讨论了一些最重要且最有趣的结果,并将其与实验研究和计算机模拟的可用数据进行了比较。
免责声明本报告是作为美国政府机构赞助的工作的帐户。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。 以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。 本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。均未对任何信息,明示或暗示的任何雇员或官员,也没有任何雇员或官员,也不是任何雇员或官员,也不承担任何法律责任或责任,对任何信息的准确性,完整性或有效性,包括任何信息,设备,产品或过程所披露或代表其使用不属于私有权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构的认可,建议或偏爱。本文所表达的文件作者的观点和观点不一定陈述或反映美国政府或其任何代理机构,Argonne National Laboratory或Uchicago Argonne,LLC。
专注于增材制造 通过 3D 打印熔融沉积建模制造的先进结构材料的局部尺度断裂表征 Joseph Marae Djouda ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 joseph.marae_djouda@epf.fr Donato Gallittelli、Marouene Zouaoui、Ali Makke、Julien Gardan ERMESS,EPF 工程学院,2 rue Fernand Sastre,特鲁瓦,法国 donato.gallitelli@gmail.com marouene.zouaoui@utt.fr almak_21@hotmail.com Julien.Gardan@epf.fr Naman Recho ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国克莱蒙奥弗涅大学,帕斯卡研究所 CNRS-UMR 6602,PB 10448,63000 克莱蒙费朗,法国。 Naman.Recho@epf.fr Jérôme Crépin 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 jerome.crepin@mines-paristech.fr
© Springer-Verlag GmbH 德国,Springer Nature 2019 的一部分 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。