- 识别在创新核系统预期条件下驱动材料响应的机制。这些机制可以按照多尺度方法在原子或更高尺度上描述。尺度桥接问题以及先进的模拟技术和数据驱动的建模/学习特别令人感兴趣。 - 离子和中子辐照,以及腐蚀和高温暴露实验,以及随后对材料微观结构、降解模式、时间相关特性、机械性能、热性能、辐射耐受性、环境抗性的表征。 - 用于生产和优化材料和组件的新颖和先进方法(包括数值方法):例如,高性能涂层、增材制造、激光烧结和用于相似和不同材料的创新连接技术。金属合金、陶瓷和陶瓷复合材料、用于核应用的先进/新型材料:
摘要。随着全球对可持续交通的需求日益增加,电动航空成为寻求传统化石燃料系统绿色替代品的重要前沿,其中光电聚合太阳能电池 (OPV) 和储能技术的进步站在改变航空业的前沿。随着仪器技术和量子力学的进步,纳米材料作为一门新学科出现,在储能领域有广泛的应用。本文研究了各种纳米结构材料(如碳基材料、金属氧化物、导电聚合物和混合纳米结构)在增强电动飞机储能能力方面的潜力。以石墨烯为例,这些材料通过利用其固有特性,提供了更大的表面积、缩短了电极材料内的离子和电子传输路径、提高了机械稳定性并增强了电导率。研究结果强调了结合不同纳米材料的协同效应,这不仅可以增强储能系统的电化学性能,而且可以为克服电动航空面临的重大挑战铺平道路。尽管取得了令人鼓舞的进展,但人们承认,在材料集成以及这些技术在商业应用中的更广泛采用方面仍存在障碍。总之,本文为进一步推进和发展电动飞机提供了机会。
纳米材料正成为高性能产品和服务不可或缺的一部分。随着技术的进步,利用纳米材料设计组件的可能性越来越大,充分利用这些材料可能提供的优势。纳米结构材料具有体积尺寸,结构包括纳米级特征,并且已经存在了很长一段时间,隐藏在日常用品中。最近,它们已经能够通过越来越复杂的仪器和工艺进行分析和操作。这种能力使它们更容易获得,然而,在更广泛地采用这些材料以利用其优势方面仍然存在挑战。本文概述了纳米结构材料在纳米材料更广泛背景下的地位和出现,研究了它们的机械性能、生产方法和应用。
摘要:振动光谱是一种无处不在的光谱技术,可表征功能性纳米结构材料,例如沸石,金属 - 有机框架(MOF)和金属 - 卤化物 - 卤化物perov-Skyites(MHP)。所得的实验光谱通常很复杂,具有低频框架模式和高频功能组振动。因此,理论上计算的光谱通常是阐明振动指纹的重要元素。原则上,有两种可能的方法来计算振动光谱:(i)一种静态方法,将势能表面(PES)近似为一组独立的谐波振荡器,以及(ii)一种动态方法,通过整合牛顿运动的方程来将PES围绕PES明确采样。动态方法考虑了Anharmonic和温度效应,并在真正的工作条件下提供了更真实的材料的代表;但是,此类模拟的计算成本大大增加。在量子机械水平上执行力和能量评估时,这肯定是正确的。分子动力学(MD)技术在计算化学领域已变得更加建立。然而,为了预测纳米结构材料的红外(IR)和拉曼光谱,其用法的探索程度较低,并且仅限于一些孤立的成功。因此,目前尚不清楚哪种方法应使用哪种方法来准确预测给定系统的振动光谱。■简介迄今为止缺乏一系列广泛的纳米结构材料的各种理论方法与实验光谱之间的全面比较研究。为了填补这一空白,我们在本文中提出了一个简洁的概述,该方法适用于准确预测各种纳米结构材料的振动光谱,并为此目的制定一系列理论指南。为此,考虑了四个不同的案例研究,每个案例研究都治疗了特定的物质方面,即柔性MOF的呼吸,刚性MOF UIO-66中缺陷的表征,金属 - 卤化物 - 卤化物perovskite CSPBBR 3中的Anharmonic振动以及对访客的吸附以及对Zeolite H-Ssz-ssz-13的孔的吸附。对于所有四种材料,在其宾客和无缺陷状态以及在足够低温下的所有四种材料中,静态和动态方法在定性上与实验结果一致。当温度升高时,由于存在Anharmonic语音子模式,CSPBBR 3的谐波近似开始失败。此外,缺陷和来宾物种的光谱指纹通过简单的谐波模型很好地预测。两种现象都弄平了势能表面(PES),这促进了亚稳态状态之间的过渡,因此需要动态采样。(ii)当材料在较高的温度下评估或额外的复杂性进入系统时,例如,强烈的非谐度,缺陷或客人物种,谐波制度分解,并且需要动态抽样才能正确预测声子频谱。在本综述中处理的四个案例研究的基础上,我们可以提出以下理论指南,以模拟功能固态材料的准确振动光谱:(i)对于低温下的纳米结构的晶体框架材料,可以使用静态方法在低温下的洞察力,可以使用几个点依靠point of the points of points of point of point of points of point of points points points and points and points and points and points and pote。这些准则及其针对原型材料类别的插图可以帮助实验和理论研究人员增强从晶格动力学研究中获得的知识。
摘要 增材制造在能源转换和存储领域的应用越来越广泛。它为制造具有改进物理性能的结构材料提供了极大的灵活性,并且还具有其他优势,例如减少材料浪费、缩短制造时间和提高成本效益。本文讨论了储能设备增材制造的最新发展。总结了结构材料的数字设计方法和主流增材制造技术,包括大桶光聚合、粉末床熔合、材料喷射、粘合剂喷射、材料挤出和定向能量沉积。然后,全面回顾了电化学和热能存储领域的最新进展。最后,提出了一个考虑数字设计和增材制造的综合框架,适用于广泛的能源应用。
摘要:微生物学上影响的腐蚀(MIC)是在存在微生物及其生物膜的情况下材料降解的过程。这是一种环境辅助的腐蚀类型,非常复杂且具有挑战性。不同的金属材料,例如钢合金,镁合金,铝合金和钛合金,据报道有MIC对其应用的不利影响。尽管许多研究人员报告了细菌作为微生物腐蚀的主要罪魁祸首,但已发现包括真菌,藻类,古细菌和地衣在内的其他几种微生物在金属和非金属表面上引起MIC。但是,对真菌,藻类,古细菌和地衣引起的麦克风的关注更少。在本文论文中,已经详细讨论了不同微生物,包括细菌,真菌,藻类,古细菌和地衣的影响,对工程材料的腐蚀特性进行了详细讨论。本综述旨在总结直接或间接导致结构材料降解的所有腐蚀性微生物。指责每种MIC病例的细菌,而无需对腐蚀部位进行适当研究,并深入研究生物膜和分泌的代谢物可能会在理解材料失败的实际原因方面造成问题。要在任何环境中识别真正的腐蚀剂,研究在特定环境中存在的各种微生物非常重要。
16h55 206 I 纳米卫星框架结构的质量减少、设计优化和验证 MABINI Gabriel Kevin - 菲律宾航天局 (PhilSA) - PH ANTE Ulysses - MIRDC - 先进制造中心 - PH PADACA Jose Bernardo III - MIRDC - 先进制造中心 - PH GERALDO Earl - MIRDC - 先进制造中心 - PH DEL ROSARIO Manuel Jr. - NG Arvin Oliver - LABRADOR John Leur - 菲律宾航天局 (PhilSA) - PH BUISON Alvin - SARMIENTO Vladimir - MIRDC - 先进制造中心 - PH
民用聚变需要能够承受聚变等离子体反应堆内部恶劣环境的结构材料。结构材料通常在 14.1 MeV 快中子下嬗变,产生氦 (He),而氦会使晶界 (GB) 网络变脆。本文表明,具有原子级自由体积的中子友好且机械强度高的纳米相可以具有低 He 嵌入能 emb 和 > 10 at.% He 吸收能力,并且在抵抗辐射损伤和蠕变的基础上特别有利于吸收 He,前提是它们具有与基质相的热力学兼容性、令人满意的平衡润湿角以及足够高的熔点。初步实验证明, emb 是纳米异相材料中 He 屏蔽效力的良好从头算预测因子,因此, emb 被用作计算筛选的关键特征。在此背景下,列出了一系列有望成为良好 He 吸收纳米相的可行化合物,其中考虑了 emb 、中子吸收和活化截面、弹性模量、熔化温度、热力学兼容性以及纳米相的平衡润湿角(以 Fe 基质为例)。
Sai Praneeth Thota, 1, 2,* Partha Pratim Bag, 1 Praveen Venkata Vadlani 3 和 Siva Kumar Belliraj 2, 4,* 摘要 利用植物基生物资源探索和开发用于长期可持续能源存储的新型纳米材料,可以提高能源供应市场的成本竞争力和减少环境影响,并满足绿色和可持续发展战略的迫切需求。 能源存储领域的最新研究趋势是专注于存储设备,包括超级电容器 (SC)、锂离子电池、燃料电池和铅酸电池。 超级电容器因其在功率和能量密度方面的卓越性能以及延长的使用寿命和在电动汽车、便携式电子设备以及固定电网等应用中的简便操作条件而具有吸引力。 由于超级电容器是由不可再生和化石资源构成的,因此迫切需要替代有效的材料。 来自可再生生物质来源的多维高孔隙率纳米结构碳可能是超级电容器电极材料的有前途的更绿色替代品。在 SC 中,源自生物质的多孔纳米碳充当电极表面的导电层。电导率、电解质的可及性、孔结构和形状、孔径分布以及高表面积对 SC 的比电容起着重要作用。本综述包括用于 SC 专用储能设备的生物质衍生多维纳米碳电极材料的最新研究平台及其未来前景。