• 在此级别应用高级损伤模型存在几个困难: • 如果使用与试件相同的细化级别,则模型大小 • 通常:不同故障机制之间的相互作用 • 通常:复杂载荷(平面外效应)并不总是在试件级别进行评估
Christos Kassapoglou 获得了麻省理工学院的航空航天学士学位和两个硕士学位(航空航天和机械工程)。自 1984 年以来,他一直在工业界工作,先是在比奇飞机公司负责全复合材料的星际飞船 I,然后在西科斯基飞机公司的结构研究小组工作,专门分析全复合材料科曼奇和其他直升机的复合材料结构,并领导由美国国家航空航天局和美国陆军资助的内部资助研究和项目。自 2001 年以来,他一直为美国多家公司提供复合材料结构在飞机和直升机上的应用咨询。2007 年,他以副教授的身份加入代尔夫特理工大学航空航天工程系(航空航天结构)。他的兴趣包括复合材料的疲劳和损伤容限、夹层结构分析、成本和重量的设计和优化以及技术优化。他在相关主题上发表了 40 多篇期刊论文和 3 项已发布或正在申请的专利。他是 AIAA、AHS 和 SAMPE 的成员。
1.1 概述................................................................................................….............. 1
1.1 概述................................................................................................….............. 1
1.1 概述................................................................................................….............. 1
1.1 概述................................................................................................….............. 1
1.1 概述 ................................................................................................….............. 1
15. 补充说明 由船舶结构委员会及其成员机构赞助 16. 摘要 本指南旨在汇集跨机构船舶结构委员会的工作成果以及国际上正在进行的其他铝制船舶结构方面的广泛研究成果,为造船业提供参考,以支持他们了解铝制船舶设计和制造,并有助于开发铝作为建筑材料。SSC 赞助了这个项目,以制定铝制海洋结构设计和制造指南。该指南涉及以下主题领域:材料特性和性能、结构设计、疲劳设计和分析程序、用于铝的典型结构细节、铝的焊接和制造、与钢结构的连接、铝结构的残余应力和变形、防火、振动、减轻撞击载荷、铝结构的维护和维修、摩擦搅拌焊接等新兴技术以及研究需求。 17. 关键词 铝结构、海洋结构、铝设计、铝制造
我在此声明,本文件中的所有信息均已根据学术规则和道德行为获得和呈现。我还声明,根据这些规则和行为的要求,我已充分引用和参考了所有非本作品原创的材料和结果。姓名,姓氏:Sercan SOYSAL
以下比较分析将是船舶结构委员会报告参考文献 A 的比较设计研究的延伸。该报告存在错误,参考文献 B 对其进行了更正。原始研究仅涉及铝制底部和侧面结构。给出了船体中部船体梁剖面模量、LCG 和船体上其他几个点的板厚、加强筋和横框架剖面模量的要求。在本比较研究中,这些要求将扩展为在钢结构中提供相同的要求,并将选择结构构件来比较底部和侧板的重量。由于原始研究中未提供足够的信息,因此不会确定甲板尺寸,也不会确定船体梁剖面模量,以确定局部要求或船体梁要求是否决定实际剖面模量。