正如我们在日常生活中观察到的和我在这里讨论的一样,温度以各种方式影响材料。我们知道所有材料都是由原子组成的;原子的电子围绕原子核旋转,原子主要由空隙组成。人们不太了解的是,任何固体中的原子都在不断交换电子,交换程度取决于材料的组成和温度。有些材料比其他材料更难抓住它们那顽强的电子。因此,如果你将不同的材料相互接触,并且如果这些材料在其他方面都是合理的电导体(金属),那么两种导体之间就会出现电压差。对电子控制力更强的材料会从另一种材料中窃取一些电子,并获得相对于另一种导体更负的电位(电压)。电位(电压)的幅度取决于所用金属的类型以及不同金属连接处的温度。我们已经讨论了绝对零度的概念,即所有分子运动都停止的地方。不难理解,热电偶产生的电压在 0 K 时变为零伏。好吧!o
氦气 氦气是一种无色、无味、不易燃的惰性气体,在空气中的含量极少,但在主要从中提炼氦气的天然气和二氧化碳田中含量较大。氦气用于众多工业领域,包括医疗设备 (MRI)、电子、航空航天工程、光纤、汽车、冶金、飞艇起重和呼吸混合物(例如深海潜水)。了解有关氦气的更多信息 液化空气海运公司是全球市场与技术 WBU 的一部分,致力于开发海上石油和天然气平台、海上风力涡轮机以及高附加值分子(如氦气)的低温海上运输的气体用途。液化空气公司遍布整个供应链,从卡塔尔最大的氦气提取装置提取,到全球海上运输和配送。其拥有 300 多个集装箱的船队覆盖全球,能够有效运输高附加值分子,例如接近绝对零度的氦气。其集装箱依靠液化空气集团在低温和数字技术方面的专业知识,确保安全可靠的供应。
摘要 — 低温 CMOS 电路因其在量子计算、磁共振成像、粒子探测器和太空任务等领域的潜在应用而备受关注。这些电路在低于 77 K 直至接近绝对零度的温度下工作,由于深低温下可用的冷却功率有限,因此面临严格的功率限制。虽然低温操作可以大幅减少漏电流并提高晶体管效率,但优化低温 CMOS 电路以在冷却限制内最小化静态和动态功耗至关重要。在本文中,我们提出了一种低温感知技术映射方法来优化低温 CMOS 电路的功率特性。所提出的方法以技术独立的逻辑网络和低温标准单元库作为输入,并生成技术映射的门级网表,从而显着降低功耗。通过考虑低温下的静态和动态功率限制,与最先进的低温非感知算法相比,该方法可实现高达 26.89% 的平均功耗降低。这种优化使得基于大规模标准单元的数字电路能够在关键应用中的低温下高效运行。
1. 关于太空种植食物的现状:宇航员已经在太空种植食物,但种植的食物并非人们所期望的那样。多年来,他们一直在种植生菜,并于 2015 年 8 月首次品尝“太空食物”。尽管这些食物是在国际空间站的受控环境中种植的,而不是在行星上,而这正是我试图弄清楚的。2. 关于太空种植食物的主要挑战:一些挑战包括太空中没有重力,这意味着植物没有“定向线”连接到地面。此外,太空就像一个巨大的真空。它空气有限,这使得在其环境中种植食物更加困难。另一个大挑战是温度,因为恒星周围会变得非常热,而在“死”空间中会变得非常冷 - 接近绝对零度。3. 关于如何模拟零重力:要模拟零重力,您需要制作一个回转器,这是一种使用旋转来模拟零重力效应的装置。 4. 模拟零度以下的温度:要模拟零度以下的温度,你需要冷冻种子。5. 模拟真空:要模拟太空中的真空效应,你必须对种子进行真空密封。
多粒子量子系统在绝对零度温度下不同相之间的转变称为量子相变,需要对粒子相关性进行精确处理。在这项工作中,我们提出了一种利用约化密度矩阵的几何结构来处理量子相变的通用量子计算方法。虽然典型的量子相变方法会检查序参数中的不连续性,但相变的起源——它们的序参数和对称性破坏——可以用两粒子约化密度矩阵 (2-RDM) 集的几何形式来理解。2-RDM 的凸集提供了量子系统的综合图,包括其不同相以及连接这些相的转变。由于 2-RDM 可以在量子计算机上以非指数成本计算,即使量子系统具有强相关性,它们也非常适合用于量子相变的量子计算方法。我们在 IBM 超导量子比特量子处理器上计算了 Lipkin-Meshkov-Glick 自旋模型的 2-RDM 凸集。尽管由于设备噪声,计算仅限于少数粒子模型,但与经典可解的 1000 粒子模型的比较表明,有限粒子量子解捕捉到了相变的关键特征,包括强相关性和对称性破坏。
*1 K(开尔文)单位是热力学温度的单位,绝对零度(0K)相当于-273.15℃。超导型在约10mK(-273.14℃)的环境下工作,半导体型在约100mK(-273.05℃)至1.5K(-271.65℃)的环境下工作,因此与超导型相比,半导体型有望实现稀释制冷机的小型化。 *2 PsiQuantum 的单光子技术需要一个大型冰箱来冷却光电探测器。 *3 虽然无法进行通用计算,但已经开发了中性原子方法:289个量子比特(QuEra,专用于一类组合优化问题)和光学方法:216个量子比特(Xanadu,专用于高斯玻色子采样)。 *4 请参阅 Pasqal 的《绿色计算路线图中的量子计算》。作为指导原则,8 榻榻米房间的制冷能力约为 2.5kW。值得注意的是,数值会根据每种方法所操作的组件和量子比特的数量而变化,而且当前量子计算机能够解决的问题都不是小规模或实用的,因此很难与当前的经典计算机进行简单的比较。 *5 维持量子态所需的时间。如果相干时间太短,量子态就会被破坏,产生噪声,降低计算的准确性。 *6 保真度是表示两个量子态接近程度的指标,代表量子电路计算的准确性。