第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
正在面临着浪费的产生,并且伴随着处理这种废物的问题。由于农业和农业领域的活动增加,产生了大量的生物质废物,这导致了环境危害和废物管理问题。在另一种情况下,由于建筑物在整个白天直接暴露于太阳辐射,这会增加建筑物外部和内部的温度,因此冷却室内建筑环境的能耗很高。大多数低中等成本的住房方案都是使用金属屋顶覆盖物构建的,而没有提供屋顶隔热层,从而导致室内温度上升并产生不舒服的环境。此外,现有在市场上用于屋顶绝缘的材料,使用可能损害人类健康的无机合成材料。该研究旨在调查农业废物在生产屋顶板绝缘材料中的潜在用途,这些材料可以为农业废物提供经济价值,减少环境问题并提供环保,可持续的建筑材料。在这项研究中,这些农业废物以不同的比例组合为50%的单个纤维,例如带有椰子壳的甘蔗甘蔗渣,带有中果纤维的空水果束,椰子壳,带有空的水果束,甘蔗渣和含有Mesocarp纤维的甘蔗。样品是使用热压机制造的,并进行了各种物理和机械测试,涉及肿胀的厚度,破裂模量和导热率。发现的发现表明,空的水果束和中果纤维的混合纤维达到了所有标准,例如密度(427 <500kg/m 3);肿胀的厚度(19 <20%);破裂模量(514 <800PSI),导热率(0.0856 <0.25 W/m.k)符合每项进行的每个实验室测试中的标准要求。这项研究的结果表明,空的水果束和中果纤维是生产屋顶板热绝缘的潜在材料。但是,需要修改废物的物理和机械性能以实现卓越的性能,并准备在市场中提供。本研究与政府一致
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
• UniGear ZS1 是 ABB 主线全球开关设备,最高电压可达 24 kV、4000 A、50 kA,并在六大洲的您身边生产 • 在 100 多个国家/地区生产和安装了超过 300,000 块面板 • 每个 UniGear ZS1 面板由一个单元组成,该单元可配备断路器、接触器或开关切断器,以及常规开关设备可用的所有附件 • 经批准可用于特殊应用,如海洋、地震、核能,并按照 IEC、GB/DL、GOST 和 CSA 标准进行型式试验 • 单元可以直接与 UniGear 系列的其他产品耦合在一起 • 开关设备不需要后部进行安装或维护,所有操作都从前面进行
“除非管道对受热房间或空间的有用热量需求有贡献,否则管道应进行隔热。进一步说,如果管道经过的空间(或它们经过的空隙的相邻空间)可能保持与它们供热的温度不同的温度,则应尽可能考虑对管道进行隔热。应采取合理措施限制管道的热量损失。《建筑法规》批准文件 L 中建议的隔热厚度与隔热材料的热导率有关,前提是热导率不超过 0.045 W/m K。隔热厚度和热导率之间的关系必须符合水温为 60°C 且环境静止空气温度为 15°C 时的最大允许热损失要求。所有连接到热水储存容器的管道,包括打开的安全通风管和热交换器的一次流动和返回管,都应从连接点或隐藏点至少 1 米处进行隔热”。
关于合作 交通电气化要求更多地使用高压系统,这对在严苛环境中部署的绝缘材料提出了更高的要求。在此次合作中,aHV 使用其自有设施对各种类型的绝缘系统进行老化处理,包括用于电机和电缆系统的绝缘系统。测试项目包括用高性能聚合物 Kapton(聚酰亚胺)、聚醚醚酮 (PEEK) 和 PAI 绝缘的样品。然后将这些样品与新的、未使用过的和未测试过的样品一起提供给 Royce 作为对照。Royce 利用一系列不同的分析手段对这些未老化和老化样品进行了特性分析,其中包括 X 射线计算机断层扫描、气相色谱-质谱、扫描电子显微镜和摩擦学(硬度测试)。Royce 能够对使用过的和全新的绝缘材料进行详细的分析和比较。结果 Royce 能够准确定位和成像由电气故障引起的故障位置,并进一步能够表征由逐渐的热和电老化引起的降解反应的副产品。作为一家小型企业,aHV 不具备开展这些特性描述活动所需的设施;因此,Royce 能够通过其独特的合作伙伴模式提供全面的访问权限,确保在需要时使用适当的专业知识。aHV 专注于电动汽车绝缘系统的开发、设计和测试——这对于这些系统中使用的电动机、电缆、连接器和电源转换器的开发至关重要。此次合作意味着 aHV 对可用于评估绝缘系统性能的技术有了更深入的了解,并且可以通过 Royce 增强他们向行业合作伙伴提供的服务。
高纯度晶体固态材料在量子信息处理的各种技术中起着至关重要的作用,从基于旋转到拓扑状态的Qubits。每年出现新的和改进的晶体材料,并继续在实验量子科学方面取得新的结果。本文总结了基于旋转和拓扑状态以及与其制造相关的挑战的量子技术的选定晶体材料的机会。我们首先描述栅极定义的量子点和基准GAA,SI和GE中的自旋Qubit的半导体异质结构,这是三个表现为两个Qubit逻辑的平台。然后,我们检查了新型的拓扑非平凡材料和结构,这些材料和结构可能掺入超导设备中以创建拓扑量。我们回顾拓扑绝缘膜薄膜,然后移至拓扑结晶材料(例如PBSNTE)及其与Josephson交界处的整合。我们讨论了新颖和专业制造和表征技术的进步,以实现这些技术。我们通过确定最有希望的方向来得出结论,在这些方向上,这些物质系统中的进步将在量子技术方面取得进展。
摘要 - 在这项工作中,我们扩展了基于3D打印的铝合金支撑结构的部分绝缘,超放射透明检测器磁铁技术的实验示例,其中包含10%的硅。该演示器磁铁的孔直径为390 mm,有效的壁厚为3.7 mm,其15回合对应于19米的HTS导体。磁铁的HTS导体由四个Rebco磁带组成,宽度为4毫米。我们测量了磁铁,在4.2 K处完全超导,工作电流为4.5 ka。磁场延迟到当前步骤的时间常数为83 s。该检测器磁铁技术可用于未来的粒子探测器磁铁,例如AMS-100电磁阀,其中关键设计要求之一是通过部分绝缘进行的被动自我保护,即使在本地损坏的导体中,也可以确保连续操作和稳定的磁场。