专为国家安全、地理空间情报、搜索和救援应用而设计 哥本哈根,2022 年 1 月 17 日——领先的数字成像技术开发商 Phase One 今天宣布推出 iXM-GS120 航拍相机,旨在满足国家安全和地理情报收集项目的苛刻需求。iXM-GS120 专为无人机 (UAV)、固定翼飞机和直升机而设计,是第一款基于先进全局快门传感器技术设计的广角 120MP 分辨率相机。Phase One 安全与空间副总裁 Dov Kalinski 表示:“Phase One 设计的 iXM-GS120 可在偏远地区的长期任务中可靠、免维护地运行,这通常是国家安全和情报收集活动的典型特征。”“对于传统的检查和测绘应用,地理空间用户会发现新相机可以高效且经济地捕获大量高质量图像。” iXM-GS120 彰显了 Phase One 致力于开发可靠、创新的航空成像解决方案的承诺。单传感器设计结合 120MP 分辨率,可确保快速收集每一帧中广泛关注区域的详细信息,从而缩短飞行时间并提高效率。在处理方面,这种设计还消除了将多传感器相机系统的图像场景拼接在一起的耗时工作。这款新相机是 Phase One 开发的最高效的机载系统。iXM-GS120 集成了 CMOS 全局快门传感器,拥有每秒七帧的出色捕捉率和宽动态范围。高灵敏度、低噪音技术使相机能够在低光照条件下收集数据,从而将其操作窗口每天延长数小时。iXM-GS120 有 RGB 彩色和单色版本可供选择,其应用范围通过广泛的视野选择进一步扩大,可在多种不同的飞机高度和速度下运行。兼容的视野包括从 35 毫米到 300 毫米的一系列镜头。“iXM-GS120 是为每帧图像都至关重要的应用而设计的,”Kalinski 说。“在国家安全活动中,iXM-GS120 将可靠地处理与广域持续监视 (WAPS)、地理空间情报 (GEOINT)、搜索和救援以及其他情报监视侦察 (ISR) 相关的长期任务。”这款紧凑型相机机身重量仅为 630 克,可轻松安装在各种平台上,包括 Group 3 战术无人机,以实现长续航时间操作。了解更多信息,请访问 https://phaseone.ws/security_and_space 观看视频:https://phaseone.ws/ixm_gs120_video
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到