“隐身”或“低可观测”飞机是指敌人难以发现的飞机。这一特性通常表现为通过精心塑造机身、特殊涂层、密封间隙和其他措施来减少飞机的雷达信号。隐身还包括以其他方式减少飞机的信号,因为对手可能会试图检测发动机热量、飞机雷达或通信设备的电磁辐射以及其他信号。最大限度地减少这些信号并非没有代价。为隐身而塑造飞机与为速度而塑造飞机的方向不同。包裹发动机和/或使用较小的动力装置会降低性能;减少电磁信号可能会在设计和战术上妥协。隐身涂层、接入口设计和密封件可能需要比传统飞机更长的维护时间和成本。
“隐身”或“低可观测”飞机的设计目标是使敌人难以发现。这一特性通常表现为通过精心塑造机身、特殊涂层、间隙密封和其他措施来减少飞机的雷达信号。隐身还包括以其他方式减少飞机的信号,因为对手可能会试图检测发动机热量、飞机雷达或通信设备的电磁辐射和其他信号。将这些信号最小化并非没有代价。为隐身而塑造飞机与为速度而塑造飞机的方向不同。遮蔽发动机和/或使用较小的动力装置会降低性能;减少电磁信号可能会在设计和战术上造成妥协。隐身涂层、接入口设计和密封件可能需要比传统飞机更长的维护时间和成本。
“隐身”或“低可观测”飞机的设计目标是让敌人难以发现。这一特性通常表现为通过精心塑造机身、特殊涂层、间隙密封和其他措施来减少飞机的雷达信号。隐身还包括以其他方式减少飞机的信号,因为对手可能会试图探测发动机热量、飞机雷达或通信设备的电磁辐射和其他信号。将这些信号最小化并非没有代价。为隐身而塑造飞机与为速度而塑造飞机的方向不同。遮蔽发动机和/或使用较小的动力装置会降低性能;减少电磁信号可能会在设计和战术上造成妥协。隐身涂层、接入口设计和密封件可能需要比传统飞机更长的维护时间和成本。
“隐身”或“低可观测性”飞机是指那些设计成难以被敌人发现的飞机。这一特性通常表现为通过精心塑造机身、特殊涂层、间隙密封和其他措施来减少飞机的雷达信号。隐身还包括以其他方式减少飞机的信号,因为对手可能会试图探测发动机热量、飞机雷达或通信设备的电磁辐射和其他信号。最小化这些信号并非没有代价。为隐身而塑造飞机与为速度而塑造飞机的方向不同。隐藏发动机和/或使用较小的动力装置会降低性能;减少电磁信号可能会在设计和战术上造成妥协。隐身涂层、接入口设计和密封件可能需要比传统飞机更长的维护时间和成本。
“隐身”或“低可观测”飞机的设计目标是使敌人难以发现。这一特性通常表现为通过精心塑造机身、特殊涂层、间隙密封和其他措施来减少飞机的雷达信号。隐身还包括以其他方式减少飞机的信号,因为对手可能会试图检测发动机热量、飞机雷达或通信设备的电磁辐射和其他信号。将这些信号最小化并非没有代价。为隐身而塑造飞机与为速度而塑造飞机的方向不同。遮蔽发动机和/或使用较小的动力装置会降低性能;减少电磁信号可能会在设计和战术上造成妥协。隐身涂层、接入口设计和密封件可能需要比传统飞机更长的维护时间和成本。
由于自动驾驶仪认证成本远高于其他航空电子设备,因此大多数其他解决方案无法取代较旧、功能较弱的现有自动驾驶仪。新一代 FCS-3000/4000 是 Pro Line 21 航空电子设备套件的完美补充。该系统具有双独立飞行指引仪和带自动俯仰控制信号的三轴自动驾驶仪。但使用 FCS-3000/4000 进行升级不仅仅是用新的数字系统替换破旧的自动驾驶仪。该系统不仅减轻了您的工作量,还为乘客提供了异常平稳的飞行体验。FCS-3000/4000 提供了一系列先进功能,包括零件数量减少带来的高可靠性、耦合 VNAV、II 类进近能力、RVSM 兼容高度跟踪性能、广泛的自诊断模式以减少维护时间、提供持续功能的增长潜力等等。
由于自动驾驶仪认证成本远高于其他航空电子设备,因此大多数其他解决方案不会取代较旧、功能较差的现有自动驾驶仪。新一代 FCS-3000/4000 是 Pro Line 21 航空电子设备套件的完美补充。该系统具有双独立飞行指引仪和带自动俯仰控制信号的三轴自动驾驶仪。但使用 FCS-3000/4000 进行升级不仅仅是用新的数字系统替换破旧的自动驾驶仪。该系统不仅可以减轻您的工作量,还可以为您的乘客提供异常平稳的飞行体验。 FCS-3000/4000 提供了一系列先进功能,包括因零件数量减少而实现的高可靠性、耦合的 VNAV、II 类进近能力、RVSM 兼容高度跟踪性能、广泛的自我诊断模式(可减少维护时间)、提供持续功能的增长潜力等等。
锂离子电池系统:平台轨道模块化和可扩展的锂离子电池系统,适用于牵引和辅助应用。LiAux® 辅助电池系统 LiAux® 实现了当今的一些总体目标:减轻重量、节省空间和提高能源可用性。与传统技术相比,LiAux 需要的维护时间更少,从而降低了生命周期成本。LiAux 的优势在于其使用寿命长(以年为单位)以及放电/充电周期。其开放式技术架构确保了灵活性和面向未来性。LiTrac® 牵引电池系统 LiTrac® 可以扩展以适应几乎所有牵引应用。电压、能量、电流和寿命特性可以适应纯电池和混合牵引系统的要求。通过使用软件驱动的控制单元,LiTrac 可以处理当今和未来的电池技术。LiAux® 和 LiTrac® 符合最高安全标准(例如 SIL 2)
额定稳定温度为1000°C,而不是使用高压塞实现的900°C。即使在低电池电压条件下,也可以保证预热。驾驶过程中电池电压下降得到补偿。在高压系统中,由于起动器吸收的电流,电池电压大幅下降,从而阻止插头达到其正确的工作温度。当额定的插头电压为4.4 V时,这不会发生。弥补了由发动机旋转的通风引起的发光插头冷却。这是通过调节有效的施加电压来进行的。根据发动机和气候条件调节插头提供的热量。更快的预热。在恒温下进行加热。预热控制单元具有用于诊断的智能系统,该系统允许单个发光插头可能被短路或中断被识别,从而减少了保修成本和维护时间。
自体干细胞移植后多发性骨髓瘤(MM)患者(MM)的最佳lenalidomide(LEN)维持持续时间尚不清楚。我们对2005 - 2021年之间接受过预期自动关联的成年MM患者进行了回顾性单中心分析,然后进行了单药LEN维护。1167例患者的中位年龄为61.4岁(25.4-82.3)年,而高风险的染色体异常为19%。中位数维护时间为22.3(范围0.03-139.6)月。中位随访后47.9(范围2.9 - 171.7)月后,整个队列的中位PFS和OS分别为56.6(95%CI 48.2 - 61.4 )月和111.3(95%CI 101.7 - 121.5)月。在MVA中,高风险的细胞遗传学与较差的PFS(HR 1.91)和OS(HR 1.73)有关(P <0.001