变异自动编码器(VAE)[19,41]是一个人口,深,潜伏的模型(DLVM),这是由于其简单而有效的数据用于建模数据分布。优化VAE目标函数比其他DLVM更易于管理。VAE的瓶颈维度是一个至关重要的设计选择,并且对模型的性能具有很强的冲突,例如使用VAE学到的代表来找到数据集的隐藏解释因素。但是,VAE的潜在维度的大小通常被视为通过反复试验和误差经验估计的高参数。为此,我们提出了一个统计公式,以发现建模数据集所需的潜在因素。在这项工作中,我们在潜在空间中使用层次先验,使用编码数据估算潜在轴的方差,该数据标识了相关的潜在维度。为此,我们用层次的先验代替了VAE客观功能中的固定先验,使剩余的配方保持不变。我们将所提出的方法称为变异自动编码器(ARD-VAE)1中的自动相关性检测。我们证明了ARD-VAE在多个基准数据集中找到相关的LATENT尺寸及其对不同评估的效果(例如FID得分和分离分析分析)的疗效。
对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
我们为孩子们创建了 7 项免费编码活动,您可以将其添加到您的家庭学校课程中,以教授编码的基本原理。它包括有趣、儿童友好的最爱,如编码单词搜索和编码填字游戏。您还可以使用我们的可打印工作表向孩子们教授算法、ASCII 代码和冒泡排序。为您的学生打下元认知、解决问题和抽象思维的基础。
摘要 20 世纪中叶,两门新的科学学科强势崛起:分子生物学和信息通信理论。起初,两者的相互影响十分深刻,以至于遗传密码这一术语被普遍接受用来描述 mRNA 三联体(密码子)作为氨基酸的含义。然而,如今,这种协同作用并未充分利用这两门学科的飞速发展,而是带来了更多的挑战而不是答案。这些挑战不仅具有重大的理论意义,而且代表了下一代生物学不可避免的里程碑:从个性化基因治疗和诊断到人工生命,再到生物活性蛋白质的生产。此外,这一问题与理论生物学所需的范式转变密切相关,这种转变早已开创,需要生物学领域以外的学科共同做出贡献。信息作为概念隐喻的使用需要转化为定量和预测模型,这些模型可以通过经验检验并以统一的视角进行整合。要成功完成这些任务,需要采取广泛的多学科方法,包括人工生命研究人员来解决这一问题。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
摘要CD44分子已知表现出大小的异质性,这既归因于替代剪接和差异糖基在繁殖域内的差异糖基化。尽管从cDNA测序中部分推断出了几个替代外显子的存在,但据我们所知,尚未描述CD44基因的精确内含子外观。在本研究中,我们描述了人类CD44基因的结构,该基因至少包含19个外显子DNA的大约50个基因酶。我们已经确定了10个在细胞外域内的剪接外显子,包括1个以前没有报道的外显子。除了整个外显子的cluson或辩解外,还通过在单个外显子2中的内部剪接供体和受体位点的uztion产生更多的多样性。先前报道的细胞质结构域的变异表明是由2个外显子的替代剪接引起的。CD44的基因组结构揭示了显着的复杂性,我们证实了替代剪接作为CD44分子中结构和功能多样性的基础的作用。
- 关注第2周的时间1-4 3开放日(1-4pm)6 ELA重新测试会议1 7 ELA RETEST会议2 8报告卡发行期限1 11 NO School/退伍军人第12天12数学重新测试会议1 13数学重新测试会议2 21父母的夜晚(5:30-7:30)
