与工业界的合作 与 Mathworks Inc. 合作开发一个用于统一系统分析框架的 MATLAB 工具箱,该框架具有计算效率,可以单独处理不同类型的复杂性。 出版物列表(国内/国际期刊) 1. N. Gupta 和 V. Mittal,“使用多特征组合和具有 K-最近邻的极端随机聚类森林 (KERCF) 的极化 SAR 图像分类”,Journal SGI Reflections,第 2 卷,第 2 期,第 53 页,2011 年 12 月。 2. A. Soor 和 V. Mittal,“一种使用高斯核的 EM 算法进行稳健高效聚类的改进方法”,Int. J. of Database Theory and Application,第 7 卷,第 1 期,第 167 页。 3,第 191-200 页,2014 3. V. Mittal、D. Singh 和 LM Saini,“基于 EM 的不同极化数据融合对土地覆盖分类影响的批判性分析”,空间研究进展,爱思唯尔,第 56 卷,第 6 期,第 1094-1105 页,2015 年。(SCI) 4. R. Sain、V. Mittal 和 V. Gupta,“基于变分贝叶斯推理的利用伽马分布先验的图像修复”,国际信号处理、图像处理和模式识别杂志,第 8 卷,第 6 期,第 1111-1125 页,2015 年。 12,第 207-216 页,2015 年 5. V. Mittal、D. Singh 和 LM Saini,“极化合成孔径雷达数据分类技术的批判性分析”,智能信息学进展国际杂志,第 2 卷,第 10-20 页,2016 年(SCOPUS) 6. P. Kumar 和 V. Mittal,“使用贝塞尔曲线和优化进行数字视频缝合和稳定”,电子和计算机工程研究国际杂志(IJRECE),第 6 卷,第 3 期,第 209-214 页,2018 年 7. P. Kumar 和 V. Mittal,“使用基于块的分割进行边缘检测”,电子和计算机工程研究国际杂志(IJRECE),第 2 卷,第 3 期,第 209-214 页,2018 年6,第 3 期,2018 年,第 222-226 页 8. V. Mittal 和 M. Mittal,“基于 Haar 小波的数值方法用于计算系统对任意激励的响应”,《高级动态与控制系统研究杂志》,2018 年第 9 期,第 2433-2439 页(SCOPUS) 9. M. Mittal 和 V. Mittal,“使用 Haar 变换算法分析难以分析的复杂 MIMO 动态系统”,《高级动态与控制系统研究杂志》,2018 年第 9 期,第 2452-2460 页(SCOPUS) 10. A. Kumar 和 V. Mittal,“使用神经网络控制器进行连续印地语语音识别的混合特征提取技术”,《高级
正在开发各种程序以重新表面关节软骨缺陷。自体软骨细胞植入(ACI)涉及从健康组织收集软骨细胞,在体外扩展细胞,并将膨胀的细胞植入软骨缺损。第二代和第三代技术包括自体软骨细胞,支架和生长因子的组合。受损的关节软骨通常无法自行愈合,并且可能与疼痛,功能和残疾丧失有关,并且可能会导致骨关节炎会随着时间的流逝而使人衰弱。这些表现可能严重损害个人日常生活的活动,并对生活质量产生不利影响。常规治疗方案包括清创术,软骨下钻孔,微裂纹和磨蚀性关节置换术。清创术涉及去除滑膜,骨质植物,疏松的关节碎片和患病的软骨,并能够产生症状缓解。软骨下钻孔,微裂缝和磨蚀性关节置换术试图通过诱导纤维球脂肪的生长到软骨缺陷中来恢复关节表面。与原始的透明软骨相比,纤维球杆菌具有承受冲击力或剪切力的能力较小,并且可以随着时间的流逝而退化,通常会导致临床症状恢复。骨软骨移植物和自体软骨细胞植入(ACI)尝试再生透明的软骨,从而恢复耐用的功能。在自体软骨细胞植入中,通过关节镜检查鉴定出健康的关节软骨区域并进行活检。骨软骨移植物,标题为“治疗局灶性关节软骨病变的自体移植和同种异体移植”。将组织发送到由美国食品药品监督管理局(FDA)许可的设施,并在该设施中被切碎并酶消化,软骨细胞通过过滤分离。分离的软骨细胞培养11-21天,以扩大细胞群,测试,然后运回植入。在全身麻醉下,患者进行关节术,并切除软骨病变至正常的周围软骨。已经开发了改进第一代ACI程序的方法,包括使用脚手架或基质诱导的自体软骨细胞植入,由生物相容性的碳水化合物,蛋白质聚合物或合成学组成。迄今为止,唯一的FDA批准的矩阵诱导的自体软骨细胞植入产物是在纸张中提供的,该产品被切成大小并用纤维蛋白胶固定。与第一代技术相比,该过程在技术上更容易,耗时较少,后者需要缝合骨膜或胶原蛋白贴片以及在斑块下注射软骨细胞。关节软骨修复程序的所需特征是(1)容易植入的能力,(2)降低手术发病率,(3)不需要收集其他组织,(4)可以增强细胞增殖和成熟,(5)维持表型,以及(6)以与周围的肉体组织一致。除了改善透明软骨的形成和分布的潜力外,使用基质诱导的自体软骨细胞植入脚手架
虽然采集过程也很耗时。此外,此方法需要3D数字化器的范围,这也相对昂贵(价格约为3000英镑)。相比之下,摄影测量方法是用于空间注册的低成本解决方案,因为它们可以通过单个智能手机轻松实现。8摄影测量法从不同角度戴上FNIRS设备的受试者拍摄了多个照片图。使用专业软件(例如MetaShape 10)将获得的2D照片图转换为3D模型(点云或网格)。该软件分析照片中的视觉特征,并首先估算与每个图像关联的相机位置。通过比较图像并识别共同点和特征,摄影测量软件可以重建对象的3D表示(在我们的情况下,是受试者的头部)。通过检查所得的3D点云或网格,可以确定Optodes的位置相对于受试者的颅骨标记。但是,此过程在计算上是昂贵且耗时的,因此通常在实验后执行,通常需要使用标准计算资源来花费数小时。如果结果3D模型不足以捕获所有OPTODES的所有位置信息,则不可能进行重新验证,因为对受试者的实验将具有长期的实验。除了上面概述的挑战外,如果受试者是婴儿,则EM跟踪和传统的摄影方法通常是不切实际的,因为它们的近乎恒定的运动。鉴于头部实际上是一个刚性对象,从理论上讲,婴儿受试者的运动不应排除有效的摄影测量法。但是,在移动婴儿的情况下,传统的摄影测量方法面临重大挑战。次优的照明条件,例如在婴儿脸上施放的不均匀照明或阴影,可能会影响获得图像的质量和清晰度。另外,当受试者运动中时,必须掩盖由此产生的2D图像中的背景以隔离婴儿的头部。这些因素共同使单机摄影测量法高度挑战,以捕获移动婴儿的准确可靠的3D头模型。最近,实施了一种使用智能手机的结构化刷新深度相机来获取主题的3D头模型进行空间注册的方法。11结构化刷新深度摄像机通过将特定的光模式投射到视野中,并分析这些模式如何被拍摄的对象形状变形。深度摄像机可以使用此信息来计算对象表面与摄像机表面上每个点的距离,从而生成对象的精确3D代表。与FNIRS注册的摄影测量法相比,结构化照明提供的直接获得的3D深度信息消除了将2D图像转换为3D模型所需的时间,从而有可能允许用户在实验过程中调整扫描过程以确保模型覆盖扫描中的所有Optodes位置,并且具有足够的质量。此外,通过直接获取量化的深度信息,结构化刷新方法具有比传统摄影测量法更准确和可靠的潜力。尽管这种直接的3D扫描方法不需要受试者严格固定,但过度移动可以并且会影响扫描图像的质量。通常不可能在一次收购中获得移动婴儿头部的完整3D模型。结果,在为婴儿应用智能手机3D扫描方法时,用户仍然需要从不同角度拍摄多个快照以产生部分3D表面,然后随后将它们缝合在一起,将其拼接在一起成一个完整的全头3D模型。尽管所需快照的数量远低于准确的光语法所需的2D图像数量,但这仍然会导致更长的获取时间,降低准确性并防止Instanta-neous结果。
看来您的连接已丢失。这是重写文本:**概述** ****3版** ** **详细信息** ** **评论** ** **列表** ** ** **相关书籍** ** ** ** 2024年1月30日** ** ** ** **由Agentsapphire ** **编辑** ** ** ** ** ** **毫无评论。January 30, 2024 Edited by AgentSapphire //covers.openlibrary.org/b/id/14573126-S.jpg January 30, 2024 Edited by AgentSapphire Update covers December 19, 2023 Edited by ImportBot import existing book November 25, 2019 Created by ImportBot Imported from amazon.com record United States Jump To Support Register or Log In Brain and Behavior A Cognitive Neuroscience透视**奉献**奉献给Cirel,Arthur,Read,Francis和Sarah-在我认识您的顺序中。和对两个儿子的虔诚母亲安·唐纳(Ann Downar),敏锐的编辑,还有红笔的天才韦尔德(Wielder)。本章探讨了神经元中信息编码的概念,并深入研究了大脑功能和行为的复杂性。大局:寻找治疗脊髓损伤的方法。大脑如何平衡稳定性与变化?洞察力是通过检查脑干来获得的,脑干在控制各种身体功能中起着至关重要的作用。为什么视觉与眼睛无关?本章深入研究了大脑视觉处理的复杂性,以及它与其他感觉的不同。在此过程中,延髓和庞斯被强调为关键参与者。日常生活的神经科学:为什么我们会打ic?本章探讨了控制我们行动的控制机制,包括中脑的作用。什么是意识?什么是情绪?**简短内容***前言:认知神经科学的回报;治愈无序的大脑; Blueprints for Artificial Cognition * About the Authors * Part I: The Basics - Introduction to brain and behavior, neurons, synapses, neuroplasticity * Part II: How the Brain Interacts with the World - Vision, other senses, motor system * Part III: Higher Levels of Interaction - Attention, consciousness, memory, sleep, language, lateralization * Part IV: Motivated Behaviors - Decision making, emotions, motivation, reward, social cognition *第五部分:大脑和行为障碍 - 神经和精神疾病**内容***序言:认知神经科学的回报;治愈无序的大脑;关于作者的人工认知 *的蓝图:增强人类能力;人工认知的蓝图;与大脑兼容的社会政策 *第一部分:基础知识: +第1章:简介 - 学习目标,开始:黑暗中的敬畏之火,回顾问题,批判性思维问题,认知神经科学的使命 +第2章:大脑和神经系统 - 神经系统的概述;研究方法:磁共振成像;病变方法;刺激方法;在大脑中定向;补充方法的工具箱 *第二部分:大脑如何与世界相互作用: +第5章:Vision +第6章:其他感觉 +第7章:运动系统 * ... *词汇表 *参考 * CREATINES * CREATINES * CREATINES *名称 *名称索引 *主题索引是在神经活动中固有编码的信息吗?通过检查大脑将世界图片缝合在一起的能力来解决这个发人深省的问题。记忆如何存储和检索?大脑为什么睡觉和梦想?大多数颅神经来自脑干,这在控制各种身体功能中起着至关重要的作用。小脑被强调为对运动协调和学习至关重要的区域。本章深入研究了人类大脑获得语言独特能力的奥秘。包括下丘脑和丘脑在内的双脑,在调节体温,饥饿和口渴中起着至关重要的作用。本章探讨了我们如何设定优先级,并强调了边缘系统在处理情感体验中的重要性。我们如何做出决定?大脑平衡稳定性与变化的能力对于决策至关重要。洞察力是通过检查尾脑(包括大脑皮层和基底神经节)来获得的。是什么引起思想和大脑的疾病?本章深入研究了围绕大脑功能和行为的复杂性。大脑和行为:在这个有趣的章节中穿越神经系统领域的旅程,我们深入研究了大脑功能的复杂性,探索我们的经历如何影响我们的神经途径。我们研究了硬线与世界经验的概念,讨论了动作电位如何通过髓鞘轴突传播,并受到经验变化的影响。然后,我们冒险进入神经科学领域,检查重组的机制以及竞争有限空间的局部神经元的作用。关于多发性硬化症的案例研究,强调了神经递质释放的重要性。研究方法,包括使用电极记录动作电位。本章还深入研究了快速变化的世界,讨论了揭露现有联系如何导致新增长的世界。我们探讨了在尖峰和解码尖峰中编码刺激的概念,突出了控制我们大脑功能的神经代码。进行了更大的研究,重点是添加新的外围物和了解神经元的种群。关键原则和条款概述了,提出了批判性思维的问题,并回顾了本章的全面概述。盲点:揭示我们的感知的隐藏方面152声称他可以踢足球189看到相同的对象不同的方式不同的方式:多稳定性152时间感知190双眼竞争:两只眼睛的不同图像:两只眼睛中的不同图像152结论193 193我们没有看到大部分的眼睛,我们看到了大部分的信息:在需要的情况下,请访问153键的范围153键154键154键键154键键154键键154键盘键入154键 by Embedding Prior Experience 156 Unconscious Inference 157 Activity from Within CHAPTER 7 The Motor System 196 Feedback Allows an Internal Model 157 LEARNING OBJECTIVES 196 Conclusion 158 STARTING OUT: “‘Locked-In Syndrome”' 198 Key Principles 159 Muscles 199 Key Terms 160 Skeletal Muscle: Structure and Function 199 Review Questions 161