摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
在半导体和高级材料行业中需要使用非接触式和非毁灭性工具,以表征散装,薄膜和2D材料的电气性能。
Harrison Lee,Samrat Phatale,Hassan Mansoor,Thomas Mesnard,Johan Ferret,Kellie Lu,Colton Bishop,Ethan Hall,VictorCărbune,Abhinav Rastogi,Sushant Prakash Prakash ICML 2024 div>Harrison Lee,Samrat Phatale,Hassan Mansoor,Thomas Mesnard,Johan Ferret,Kellie Lu,Colton Bishop,Ethan Hall,VictorCărbune,Abhinav Rastogi,Sushant Prakash Prakash ICML 2024 div>
背景。AI安全级别标准(ASL标准)是一套安全培训和部署Frontier AI模型的技术和运营措施。这些目前分为两类:部署标准和安全标准。随着模型功能的增加,对更强大的保障措施的需求也将在更高的ASL标准中捕获。目前,我们所有的模型都必须符合ASL-2部署和安全标准。要确定何时已经足够先进的模型以使其部署和安全措施得到加强,我们使用能力阈值的概念和所需的保障措施。功能阈值告诉我们何时需要升级保护措施,相应的必要保障措施告诉我们应适用什么标准。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
本文提出了一套新的缩放定律,用于研究轻质钢筋混凝土隧道衬砌在 1g 振动台试验中的开裂后行为。开裂后行为缩放定律使用两个无量纲参数制定:脆性数 s ,它控制非钢筋混凝土构件的断裂现象;NP ,它对钢筋混凝土构件中混凝土断裂过程和钢塑性流动的稳定性起主要作用。提出的定律允许开发“充分”的实验模型,并使用原型和 1:30 模型比例的岩石钢筋隧道的数值分析进行验证。采用的实验装置的灵感来自现有的 1g 物理测试活动,该测试活动针对岩石混凝土隧道的地震响应,并且假设的定律表明在两个检查的地震记录下,模型和原型隧道的开裂行为具有令人满意的相似性。强调了在 1g 测试中使用提出的定律对钢筋混凝土隧道中不断发展的裂缝模式进行 A 级预测的潜力。在三种可能的边界条件下对所提出的定律进行了检验,结果表明,与设想的自由场边界模型相比,刚性箱和层流箱仍然可以显著改变行为。但分析表明,对于较大的土壤与衬砌刚度比,边界伪影可以大大减少。本研究为迄今为止尚不存在的未来 1g 测试提供了有用的建议,而所提出的缩放定律允许在设计新型隧道衬砌模型测试材料时具有多功能性。
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
Michele Martinazzo,Davide Magurno,William Cossich,Carmine Serio,Guido Masiello,Tiziano Maestri,评估远红外和中红外波长的缩放方法的准确性,定量光谱和辐射转移杂志,杂志
摘要 - 建造土壤水分(SM)的气候数据记录(SM)需要通过合并板载不同卫星的传感器的检索来计算长时间序列,这意味着在原始时间序列上执行偏见校正或重新缩放。由于它们的长时间跨度和高时间频率,模型数据可以用作重新缩放的常见参考。但是,某些应用程序需要避免观察性气候数据记录中的模型依赖性。在本文中,讨论了从L -band传感器之一专门设计用于测量SM的L-带传感器之一的参考遥感数据的可能性。高级微波扫描辐射计2 SM时间序列通过将其累积分布函数(CDF)与土壤水分和海洋盐度(SMOS),土壤水分积极被动(SMAP)和全球土地数据同化系统(GLDAS)Noah Noah模型时间序列相匹配,从而重新缩放。CDF计算作为时间序列的函数进行了批准,从四年到九年中发现了显着差异。通过空间差异代替时间不允许我们从短时间序列中计算出更好的CDF。重新定义的时间序列显示高相关性(r> 0。8)相对于参考,原始的偏差(<0.03 m 3·m -3)。还对使用几个SMO或SMAP数据集进行重新缩放的时间序列也针对原位测量进行了评估,并显示出类似于或使用模型GLDAS重新缩放的表演。评估了观察数据的随机误差和差距对重新恢复的影响。这些结果表明,实际上可以将L-带数据用作来自其他传感器的Rescale时间序列的参考来构建SM的长时间序列。
,我们为具有有限键尺寸的基质产品状态(MPS)的重新归一化流量设置了有效的现场理论公式,重点是表现出有限的纠缠缩放的系统,接近近形不变的临界固定点。我们表明,有限的MPS键尺寸χ等同于将相关操作员的扰动引入固定点哈密顿式。该机制的指纹编码在χ无依赖性的通用转移矩阵的间隙比中,这与未受干扰的保形场理论(CFT)预测的指纹不同。这种现象定义了一个重新归一化的自共同点,其中相关的耦合常数由于两个效应的平衡而停止流动;当增加χ时,由相关长度ξ(χ)设定的红外量表会增加,而晶格尺度下扰动的强度降低。存在自我征集点的存在不会改变有限输入缩放假设的有效性,因为自我一致点位于距离临界固定点的有限距离,远方属于CFT的缩放机构内部。我们用有效晶状体模型的ISING模型和密度矩阵重新归一化组(DMRG)模拟的精确解的数值证据证实了这一框架。