摘要:植物暴露于包括病原体在内的各种压力源,需要特定的环境条件引起/诱导植物性疾病。这种现象称为“疾病三角”,直接与特定的植物病因相互作用有关。只有与易感植物品种相互作用的有毒病原体会在特定的环境条件下导致疾病。这似乎很难实现,但是软腐果杆菌科(SRP)是一组具有广泛宿主范围的致病细菌。此外,在农业中经常存在的问题(由此导致的缺氧)是这组病原体的青睐状况。供水本身是由于气体交换降低而引起的植物非生物应力的重要来源。因此,植物已经进化了一种基于乙烯的系统,用于低氧感测。植物反应通过荷尔蒙变化协调,这些变化诱导了对环境条件的代谢和生理调整。湿地物种,例如大米(Oryza sativa L.)和苦乐夜(Solanum dulcamara L.),已经开发了适应性,使它们能够承受较长的氧气可用性时期。马铃薯(茄索拉姆结核)虽然能够感知和对缺氧的反应,对这种环境压力很敏感。SRP利用了这种情况,该情况响应缺氧诱导毒力因子的产生,并使用环状二甘氨酸(C-DI-GMP)。为了实现该目标,我们可以寻找野土豆和其他茄种,以寻求抗水池的抗性机制。马铃薯块茎又减少了防御能力,以防止能量,以防止活性氧和酸化的负面影响,使它们容易发生软腐病疾病。为了减少由软腐病疾病引起的损失,我们需要敏感和可靠的方法来检测病原体,以隔离感染的植物材料。但是,由于SRP在环境中的高度流行,我们还需要创造出对疾病具有更具耐药性的新马铃薯品种。马铃薯耐药性也可以通过有益的微生物来帮助,这可以诱导植物的天然防御能力,但也可以浸水。然而,大多数已知的植物 - 借氧微生物患有缺氧,植物病原体可能胜过。因此,重要的是寻找可以承受缺氧或通过改善土壤结构来承受低氧或减轻其对植物的影响的微生物。因此,考虑到环境条件的影响,本综述旨在提出马铃薯对缺氧和SRP感染的反应以及预防软腐病疾病的未来前景的关键要素。
引言胶质母细胞瘤多形(GBM)是一种侵略性和致命的脑肿瘤,尽管综合护理标准以及最大的手术切除,放射线和化学疗法。治疗GBM的一种潜在方法是免疫疗法;但是,尽管在其他几种类型的癌症中取得了希望的结果,但免疫治疗尚未对GBM有效(1)。在GBM中成功进行免疫疗法的主要挑战之一是高度免疫抑制肿瘤微环境,其特征是许多机械主义(2),包括低氧疾病(3)。因此,最近的研究集中在制定创新策略来克服这些挑战并提高免疫疗法的有效性(4,5)。嵌合抗原受体T细胞(CAR-T)治疗表现出对血液学恶性肿瘤的显着疗效(6)。然而,其治疗潜力仍然受到包括脑肿瘤在内的实体瘤的限制(5)。免疫细胞的代谢状态最近被认为是癌症免疫疗法的关键因素。糖酵解代谢对于效应T细胞至关重要,在线粒体中发生的氧化磷酸化(OXPHOS)对于记忆T细胞的高存活能力至关重要(7)。此外,已知在耗尽的T细胞中已知糖酵解和Oxphos会减少(8)。在肿瘤微环境中,缺氧条件和慢性抗原刺激迅速降低T细胞线粒体功能并导致衰竭(9)。因此,我们假设增强CAR-T细胞的线粒体功能可以阻止它们在GBM的低氧微环境中筋疲力尽。为了解决这一假设,在这项研究中,我们在输注前用代谢调节剂研究了CAR-T细胞的预处理,并检查了其转化潜力。
适应慢性缺氧是通过蛋白质表达的变化而发生的,蛋白质表达受到低氧诱导因子1α(HIF1α)的控制,对于癌细胞存活是必要的。然而,在HIF1α介导的转录程序完全确定之前,使癌细胞能够适应早期缺氧的机制仍然很少了解。在这里,我们在人类乳腺癌细胞中表明,在缺氧暴露3小时内,糖酵解液以HIF1α非依赖性方式增加,但受NAD +可用性的限制。早期缺氧的糖酵解ATP维持和细胞存活依赖于储备乳酸脱氢酶A的能力以及谷氨酸 - 氧化甲酸乳凝集酸酯酸酯酸酯酶1(GOT1)的活性,该酶是一种燃料的酶,该酶燃料母体脱氢酶1(MDH1)衍生的NAD NAD +。此外,GOT1保持较低的α-酮戊二酸水平,从而限制了早期缺氧中HIF1α稳定的丙酰羟化酶活性,并在后期缺氧中启用强大的HIF1α靶基因表达。我们的发现表明,在北莫西亚中,多种酶系统将细胞保持在启动状态下,准备支持增加糖酵解的糖酵解和HIF1α稳定在氧气限制下,直到其他需要更多时间的自适应过程已完全确定为止。
图1。实验设置。(a)研究参与者坐在脚踏板中的测试脚上,耦合到6度的自由度负载电池。表面肌电图记录了内侧腹腔,比目鱼,胫骨前和股四头肌肌肉的肌肉活性。(b)参与者以随机顺序进行了一次AIH或SHAM AIH的一次会议,至少相隔一周。AIH方案由15秒的60秒交替发作(〜9%O 2)与常氧房空气(21%O 2)组成。Sham Aih由交替的常规房间空气发作。(c)在每次疗程之前,在0-,30和60分钟之前评估了踝部植物和背反射强度以及表面肌电图。仅在基线和干预后60分钟进行认知测试。
背景:缺氧是住院健康健康状况下降的重要危险因素和指标。使用机器学习预测未来的低氧事件是一个前瞻性的研究领域,旨在促进时间关键的干预措施,以应对患者健康恶化。目的:这项系统评价旨在总结和比较以前的努力,以相对于他们的方法,预测性能和评估人群来预测医院环境中的低氧事件。方法:使用科学网络,带有Embase和Medline的OVID以及Google Scholar进行了系统的文献搜索。研究了使用机器学习模型研究住院患者缺氧或缺氧血症的研究。 使用偏见评估工具的预测模型风险评估偏见的风险。 结果:筛选后,总共有12篇论文有资格进行分析,从中提取了32个模型。 纳入的研究表明了各种人群,方法论和结果定义。 由于大多数研究的偏见不明或高风险(10/12,83%)而进一步限制了可比性。 总体预测性能从中等到高。 基于分类指标,深度学习模型在同一研究中执行类似于传统的机器学习模型。 仅使用先前的外围氧饱和度作为临床变量的模型比基于多个变量的模型显示出更好的性能,其中大多数研究(2/3,67%)使用长期的短期记忆算法。研究了使用机器学习模型研究住院患者缺氧或缺氧血症的研究。使用偏见评估工具的预测模型风险评估偏见的风险。结果:筛选后,总共有12篇论文有资格进行分析,从中提取了32个模型。纳入的研究表明了各种人群,方法论和结果定义。由于大多数研究的偏见不明或高风险(10/12,83%)而进一步限制了可比性。总体预测性能从中等到高。基于分类指标,深度学习模型在同一研究中执行类似于传统的机器学习模型。仅使用先前的外围氧饱和度作为临床变量的模型比基于多个变量的模型显示出更好的性能,其中大多数研究(2/3,67%)使用长期的短期记忆算法。结论:机器学习模型提供了基于回顾性数据准确预测低氧事件的潜力。研究的异质性和结果的可推广性有限,这突出了需要进一步验证研究以评估其预测性能的必要性。
由多种细胞类型组成,其功能不同,小肠上皮细胞在哺乳动物肠的第一部分中执行其功能,并协同维持稳态。由于血管的分布不均匀,氧气水平在正常肠中表现出梯度降低的模式,并且在某些肠道疾病中变得异常。在这项工作中,我们发现通过氯化二氧化碳(COCL 2)模拟的某些水平的缺氧导致秘密细胞类型的增加,并且在体外培养的小鼠小肠癌中的吸收细胞类型降低。重要的是,肠道干细胞的量受到影响,从而导致上皮再生。我们的研究强调了缺氧损伤下的细胞类型特异性改变,这可能给出了与缺氧相关的胃肠道疾病的治疗提示。关键词缺氧,肠干细胞,分化,器官简介
摘要目的:评估氯化钴(COCL 2)作为模仿人脐带间充质干细胞(HUCMSCS)HIF-1α和MTOR表达的缺氧剂的影响,用于再生牙科。材料和方法:分离出人脐带间充质干细胞然后培养。通过流式细胞术筛选了茎的特征并确认。该实验是在缺氧(H)和常氧(N)组上进行的。将每个组分割并孵育为24,48和72小时的观测值。缺氧处理。然后,进行了HIF-1α和MTOR的免疫荧光。使用单向方差分析和Tukey的HSD对数据进行统计分析。结果:在HIF-1α(p = 0.015)和mTOR(p = 0.000)表达式上发现正氧基和低氧基团之间存在显着差异。在缺氧组中发现了最高的HIF-1α表达,而在低氧组中为24小时的MTOR。结论:使用氯化钴的缺氧能够增加HIF-1α和MTOR的人脐带间充质干细胞的表达。关键字:脐带;间充质干细胞;干细胞研究;缺氧;再生。
1 Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yongwaizheng Road, Donghu District, Nanchang, Jiangxi, 330006, China, 2 Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Medical College Road, Yuzhong区,重庆,400016,中国,烧伤塑料和伤口修复3号医疗中心,第一家Affinied Hospital,江西医学院,北昌大学,北旺大学,扬旺·昂路,东北区,北昌,江西,330006,330006,330006,中国,北部4号,北部北部,北部的北部北部第三名。中国,江西孕产妇和儿童健康医院5号,中国,北田330006,北田330006,6 Haplox Biotechnology Co.中医,Qianjiang Road,Yaohai District,Hefei 230038,Anhui,P.R。中国,8转化医学合作创新中心,深圳人民医院(第二次临床医学院,吉南大学;南部科学技术大学的第一家AFFIMIATIAD HOSPITION,南部科技大学),Luohu区,深圳市518020,中国广东和9号伯恩和整形外科系,广州第一人民医院,南中国中国技术大学,潘费库路,帕富岛,Yuexiu dive,Guangangzhou,Guangangdong,5010111801180118011801180118011801。
低氧信号传导在生理和病理状况中起重要作用。心脏组织中的缺氧会根据暴露于低氧状态的持续时间而产生不同的后果。虽然急性低氧暴露会导致心脏组织的可逆适应性,但慢性缺氧加剧心脏功能障碍,导致组织破坏。细胞外囊泡(EV)是小膜囊泡,充当细胞间通信的介体。evs由不同的细胞类型分泌,由口腔衍生的间充质干细胞(MSC)(包括人牙龈MSC(HGMSC))产生的细胞类型具有促血管生成和抗炎性弹药作用,并在组织再生中显示出治疗作用。本工作的目的是通过HGMSCS产生的EV的潜在保护性和再生作用,在缺氧条件的HL-1心肌细胞的体外模型中,通过以下表达伴有氧化,氧化应激,血管生成,血管生成,生存和apptoptotic标记的表达分析。 IL6,NRF2,CASP-3,BAX和VEGF。结果表明,HGMSCS衍生的EV施加了暴露于前后缺氧条件的HL-1心肌细胞的保护HL-1心肌细胞。此外,CASP3和BAX表达的调节表明,EV降低了凋亡。进行了从HGMSC衍生的电动汽车中的microRNA分析,以评估所提出的标记的表观遗传调节。The following microRNAs: hsa-miR-138-5p, hsa-miR-17- 5p, hsa-miR-18a-5p, hsa-miR-21-5p, hsa-miR-324-5p, hsa-miR-133a-3p, hsa- miR-150-5p, hsa-miR-199a-5p, hsa-miR-128-3p and HSA-MIR-221-3P可以通过确定其调节
所有糖尿病患者中约有20–40%患有慢性肾脏疾病,这与较高的死亡率有关(心血管和全因)。大量证据表明,在早期和晚期阶段,肾脏缺氧是驱动糖尿病肾脏疾病的主要力量之一。它促进了炎症,产生牙内胶原蛋白,结膜稀有性,并最终摧毁了正常肾脏结构的细胞外基质。SGLT2抑制剂无疑是一种改变练习的药物类,是2型糖尿病和慢性肾脏疾病的患者的宝贵武器。他们在靶向多种和相互关联的信号通路(包括肾脏缺氧)之后,已经达到了几种有益的肾脏作用,而与其抗血糖活性无关。本手稿讨论了病理生理概念,这些概念可能对调节肾脏缺氧的可能影响产生影响。它还综合研究了临床前和临床研究,探讨了SGLT2抑制剂在这种情况下的可能作用,以实现长期的妇产科益处。