背景:软组织肉瘤 (STS) 是罕见的异质性肿瘤,需要生物标志物来指导治疗。我们之前得出了一个预后肿瘤微环境分类器(24 基因缺氧特征)。在这里,我们开发/验证了一种用于临床应用的检测方法。方法:在 28 份前瞻性收集的福尔马林固定石蜡包埋 (FFPE) 活检样本中比较了靶向检测 (Taqman 低密度阵列、nanoString) 的技术性能。通过与临床样本中的 HIF- 1 α /CAIX 免疫组织化学 (IHC) 进行比较,对 nanoString 检测进行了生物学验证。曼彻斯特 (n = 165) 和 VORTEX III 期试验 (n = 203) 队列用于临床验证。主要结果是总生存期 (OS)。结果:两种检测均表现出极好的可重复性。 nanoString 检测在体外缺氧条件下检测到 24 个基因特征的上调,而在体内 CAIX 表达高的肿瘤中,16/24 个缺氧基因上调。在曼彻斯特队列(HR 3.05,95% CI 1.54 – 5.19,P = 0.0005)和 VORTEX 队列(HR 2.13,95% CI 1.19 – 3.77,P = 0.009)中,缺氧高肿瘤患者的 OS 较差。在合并队列中,缺氧高肿瘤患者的 OS 独立预后(HR 2.24,95% CI 1.42 – 3.53,P = 0.00096)并与较差的局部无复发生存期相关(HR 2.17,95% CI 1.01 – 4.68,P = 0.04)。结论:本研究全面验证了更适合 FFPE STS 活检的微环境分类。未来用途包括:(1) 选择高风险患者进行围手术期化疗;(2) 生物标志物驱动的缺氧靶向治疗试验。
抽象硫酸盐还原细菌(SRB)是在缺氧海洋环境中降解有机物(OM)的必不可少的功能性微生物分类群。但是,关于SRB如何调节微生物群落的实验数据很少。在这里,我们通过抑制SRB来阐明其在OM退化期间对微生物群落的贡献,采用了自上而下的微生物社区管理方法。基于五个不同的孵化阶段的高度复制的缩影(n = 20),我们发现在抑制SRB(包括组成,结构,网络和社区组装过程)后,许多微生物群落特性受到影响。我们还通过正频依赖性选择发现了SRB和其他丰富的系统发育局部之间的强共存模式。Fami的相对丰度在抑制OM降解期间抑制SRB后同时抑制SRB后,同时抑制了Srixibaccaceae,Dethiosulfatibactacteraceae,prolixibacteraceae,Marinilabiliaceae和Mariniieae。SRB与共存分类单元之间的Marinilabiliales之间的密切关联是最突出的。他们在网络演替期间有助于保存的模块,是介导网络社区的基石节点,并有助于同质的生态选择。对海洋质体分离菌株的钼耐受性检验表明,抑制的SRB(不是SRB本身的抑制剂)触发了海洋质体的相对丰度的降低。这些数据支持SRB可以修改生态位以影响物种共存。我们还发现,抑制SRB导致pH值降低,这不适合大多数海洋属性菌株的生长,而在SRB抑制处理中,添加pH缓冲液(HEPE)可恢复这些细菌的pH和相对丰度。
1. 巴黎城市大学医学院,法国巴黎 2. 巴黎中心医院公共援助中心 (APHP-Centre) HEGP 医院重症监护室,法国巴黎 3. 巴黎大学精神病学和神经科学研究所 (IPNP) INSERM UMR 1266,法国巴黎 4. 脑和脊柱研究所 - ICM,INSERM U1127,CNRS UMR 7225,F- 75013,法国巴黎 5. 巴黎国立大学精神病学神经科学系,大学医院神经麻醉和复苏科,法国巴黎 6. 巴黎国立大学精神病学和神经科学系神经生理学和癫痫病学系,圣安妮,F-75014 巴黎 7. 巴黎城市大学,INSERM,止血创新疗法,F-75006 巴黎,法国8. 生物外科研究实验室(卡彭蒂尔基金会),法国巴黎 9. 巴黎公共医疗援助中心科钦医院重症监护室(APHP 中心),法国巴黎 10. 巴黎心血管研究中心,INSERM U970,法国巴黎
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
摘要 缺氧越来越被认为是一种重要的生理驱动力。氧气 (O 2 ) 供应减少(例如高海拔地区的吸气性缺氧)会诱导特定的转录程序,使细胞能够适应较低的 O 2 和有限的能量代谢。这种转录程序部分受缺氧诱导因素控制,部分独立于缺氧诱导因素。值得注意的是,大量的运动认知锻炼会刺激大脑中的这一转录程序,导致与急剧增加的 O 2 需求相比,O 2 供应相对减少。我们将这种重要的需求反应性、O 2 供应相对减少称为“功能性缺氧”。功能性缺氧似乎对于持久适应更高的生理挑战至关重要,包括实质性的“大脑硬件升级”,这是高级性能的基础。缺氧诱导的大脑促红细胞生成素表达可能在这些过程中起决定性作用,可以通过重组人促红细胞生成素治疗来模仿。本文综述了吸气时氧气调节如何有助于增强大脑功能的提示。从而为利用适度吸气和功能性缺氧治疗脑部疾病患者奠定了基础。最后,本文概述了一项计划中的多步骤试点研究,该研究针对健康志愿者和第一批患者,旨在提高吸气时缺氧下运动认知训练的表现。
摘要简介:介孔二氧化硅纳米颗粒(MSNP)被认为是创新的多功能结构,用于靶向药物,由于其出色的物理化学特征。方法:使用SOL-GEL方法制造MSNP,并将聚乙烯甘油-600(PEG 600)用于MSNPS修饰。随后,将Sunitinib(Sun)加载到MSNP中,MSNP-PEG和MSNP-PEG/Sun与粘蛋白16(MUC16)适体接枝。使用ft- ir,tem,sem,dls,xrd,bjh和BET对纳米系统(NSS)进行表征。此外,通过MTT分析和流式细胞仪分析评估了MSNP的生物学影响。结果:结果表明,MSNP具有平均尺寸,孔径和表面积分别为56.10 nm,2.488 nm和148.08 m 2 g -1的球形形状。与SK-OV-3细胞相比,细胞活力结果显示,在MUC16过表达的卵CAR-3细胞中,靶向MSNP的毒性更高。细胞摄取结果进一步证实了这一点。细胞周期分析表明,Sub-G1相阻滞的诱导主要发生在MSNP-PEG/ SUN-MUC16处理过的卵CAR-3细胞和MSNP-PEG/ SUN处理过的SK-OV-3细胞中。DAPI染色显示在MUC16阳性OVCAR-3细胞中暴露于靶向的MSNP时凋亡诱导。结论:根据我们的结果,工程的NSS可以被认为是粘蛋白16过表达细胞的有效多功能药物输送平台。
摘要:内源性大麻素(EC)系统是一个复杂的细胞信号系统,自产前时期以来参与大量生物学过程,包括神经系统的发展,脑可塑性和电路修复。这种神经调节系统还参与了对内源性和环境损伤的反应,在预防和/或治疗血管疾病(例如新生儿脑损伤后的中风和神经保护)方面具有特殊相关性。导致新生儿脑病的围产期缺氧 - 异常是一种毁灭性的疾病,除了中度低温外,没有治疗方法,这在某些情况下仅有效。因此,此概述对EC系统的主要组成部分(包括大麻素受体,配体和相关酶)提供了当前的描述,以随后分析EC系统,作为新生儿神经保护的靶标,特别关注其神经源性潜在的脑损伤后神经源性潜力。
释放了研究主题“大脑缺氧和缺血:对神经退行性和神经保护作用的新见解”的第一个问题,因此发表了许多研究,许多研究扩展了我们对缺氧可以发挥破坏性或保护性作用的分子机制的理解。正常的大脑发育和功能极大地取决于氧气供应及其不良效率,这是由于环境中的氧气水平降低(缺氧)或血液流量降低(缺血)可以导致神经元细胞死亡和随后的神经变性。氧的缺乏效率的影响显着,从膜脂质的组成,酶活性的变化,线粒体重塑,随后导致基因表达和转换的变化,从而显着各种细胞功能。血管健康受损和脑供应减少的大脑供应与许多神经退行性疾病的发病机理有关,包括血管性痴呆和阿尔茨海默氏病。此外,劳动力中怀孕或胎儿缺血/缺血期间的母亲缺氧在劳动力显着影响新生的大脑发育和功能方面,从而增加了以后生活中发展各种神经病理学的风险。强化研究提出了各种治疗途径,用于开发治疗方法和预防方法,以应对缺氧和缺血性损伤的病理影响,包括旨在增加大脑缺氧 - 缺血性耐受性的缺氧前和后解决方案。在COVID-19大流行后的近年来,缺氧是这种系统性疾病伴随的主要因素之一,导致患者的神经系统表现不仅
摘要 转录因子 (TF) 通常被认为是一种模块化结构,包含结构良好的序列特异性 DNA 结合结构域 (DBD) 与无序的激活结构域 (AD) 配对,后者负责靶向辅助因子或核心转录起始机制的蛋白质-蛋白质相互作用。然而,这种简单的分工模型无法解释为什么在体外确定的具有相同 DNA 结合序列特异性的 TF 在体内表现出不同的结合谱。缺氧诱导因子 (HIF) 家族提供了一个鲜明的例子:在几种癌症类型中异常表达的 HIF-1 α 和 HIF-2 α 亚基异构体在体外识别相同的 DNA 基序——缺氧反应元件 (HRE)——但在体内仅共享其靶基因的一个子集,同时在某些情况下对癌症的发展和进展产生对比的影响。为了探究介导异构体特异性基因调控的机制,我们使用活细胞单粒子追踪 (SPT) 来研究 HIF 核动力学及其在遗传扰动或药物治疗下的变化。我们发现 HIF-α 亚基及其二聚化伴侣 HIF-1β 表现出独特的扩散和结合特性,这些特性对浓度和亚基化学计量极为敏感。使用域交换变体、突变和 HIF-2α 特异性抑制剂,我们发现尽管 DBD 和二聚化域很重要,但染色质结合和扩散行为的另一个主要决定因素是含有 AD 的内在无序区域 (IDR)。使用 Cut&Run 和 RNA-seq 作为正交基因组方法,我们还证实了 IDR 依赖的 HIF 靶基因特定子集的结合和激活。这些发现揭示了 IDR 在调节 TF 搜索和结合过程中以前未被重视的作用,这有助于染色质上的功能性靶位点选择性。
摘要 仅使用脑图像很难向非放射科医生和普通人展示患有缺氧缺血性损伤 (HII) 的儿童的脑表面皮质损伤。三维 (3D) 打印有助于传达儿童脑因 HII 导致的体积损失和病理。3D 打印模型按比例表示脑,可以与正常脑模型进行比较以了解体积损失。如果要使用 3D 打印的脑用于正式交流,例如与医学同事或在法庭上交流,它们应该高度逼真地再现患者脑的实际大小。在这里,我们评估了先前患有 HII 的儿童的脑部 MRI 扫描的 3D 打印模型的尺寸保真度。根据 HII 儿童的 MRI 扫描创建了 12 个脑部 3D 打印,并选择它们来代表各种皮质病理。对 3D 打印进行了特定的预定测量,并将其与 MRI 上匹配平面的测量值进行比较。额枕骨长度 (FOL) 和双颞骨/双顶骨直径 (BTD/BPD) 显示出较高的组间相关性 (ICC)。半球高度、颞骨高度和脑桥小脑厚度的相关性为中等至弱。平均测量标准误差 (SEM) 为 0.48 厘米。我们的结果表明,从脑部 MRI 扫描得出的每个 3D 打印模型与原始 MRI 的总体测量值具有较高的相关性,FOL 和 BTD/BPD 的高 ICC 值就是明证。相关性值较低的测量值可以通过测量平面与 MRI 切片方向的匹配变化来解释。
