方法:在这项研究中,NSCLC细胞系A549和H460在低氧条件下培养1周,以诱导对阿霉素(DOX)的耐药性。通过逆转录和实时聚合酶链反应(RT-QPCR),Western blot和Dual-Luciferase Assays测定,miR-194-5p和HIF-1之间的连接揭示了。我们使用TUNEL染色和CCK-8测试来评估NSCLC细胞对DOX的敏感性。结果:我们发现缺氧诱导的NSCLC细胞增强了对DOX的抗性。miR-194-5p大大降低了,在缺氧诱导的耐药NSCLC细胞中增加了HIF-1。此外,MiR-194-5p通过直接抑制HIF-1成功诱导NSCLC细胞凋亡,从而增强了DOX敏感性。结论:miR-194-5p通过直接抑制HIF-1来增强NSCLC细胞对DOX的敏感性。这项工作为耐药NSCLC的基本治疗提供了见解。
目前,临床HIBD诊断主要依赖两个方面。These include clinical characterization, which specifically refers to abnormal changes in consciousness, original reflec- tion (there are some congenital reflexes in newborns, which reflect whether the body and nervous system function of the newborn is normal), and muscle tension, 6 as well as detection of HIBD- induced lesions using ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and other medical imaging技术。这些古典技术具有自己的优势和局限性。超声已经逐渐优化了大脑结构扫描的分辨率,但不足以监测功能性血流动力学的能力。ct涉及一定的辐射程度,未成熟的脑组织具有单场耐受性。MRI具有强大的空间分辨率,可以准确区分局部脑血流的灌注水平。但是,由于临床不稳定和/或治疗性干预所需的医疗设备,对新生儿的方便且连续的床边监测有新兴的需求。通过功能近红外光谱(FNIRS)静止状态脑网络分析来满足需求是一项积极的努力。fnirs是一种相对较新的非侵入性脑成像技术,由于其对参与者的友好性,引起了大脑研究人员的极大关注。7,8更重要的是,FNIRS在HIBD诊断中的主要优势是支持便携式和连续的床边监测。9,10fnirs允许我们在几分钟内获得新生儿高质量的数据集。值得注意的是,可以在不需要执行任务或其他辅助试剂(镇静剂)的情况下与婴儿一起以安静或睡眠状态收集数据。床边的短期准备和检测期意味着儿科医生可以在任何关键点反复记录数据。此外,与CT或正电子发射CT相比,FNIRS避免了辐射对新生儿的影响。大脑网络分析已广泛用于评估大脑功能。人脑是具有许多本地或全球拓扑特征的高度复杂的网络系统。
目的:研究除非耦合脑电图特征外,脑电图功能连接特征对心脏骤停后昏迷患者预后的预测价值。方法:前瞻性、多中心队列研究。计算心脏骤停后 12 小时、24 小时和 48 小时 19 通道脑电图的相干性、相位锁定值和互信息。使用功能连接、脑电图非耦合特征和两者的组合训练和验证了三组机器学习分类模型。在六个月时评估神经系统预后,并将其归类为“良好”(大脑功能类别 [CPC] 1-2)或“较差”(CPC 3-5)。结果:我们纳入了 594 名患者(46% 预后良好)。在心脏骤停后 12 小时,基于最佳功能连接的分类器在预测不良预后方面实现了 51%(95% CI:34–56%)的灵敏度和 100% 的特异性,而使用 12 小时和 48 小时数据,基于最佳非耦合的模型在 100% 特异性下达到了 32%(0–54%)的灵敏度。两组特征的组合在 100% 特异性下实现了 73%(50–77%)的灵敏度。结论:功能连接测量可改善基于脑电图的缺氧昏迷不良预后的预测模型。意义:从早期脑电图得出的功能连接特征具有改善心脏骤停后昏迷结果预测的潜力。2021 年国际临床神经生理学联合会。由 Elsevier BV 出版,保留所有权利。
胰腺癌具有促结缔组织增生性,具有高度间质样基质,有利于缺氧,诱导上皮-间质转化 (EMT) 并导致肿瘤细胞转移 (7)。胰腺癌被致密的纤维化基质包围,基质内含有致密的团块、胰腺星状细胞 (PSC) 和细胞外基质。基质创造了一个缺氧微环境,在促进胰腺癌细胞发育和诱导肿瘤细胞转移方面发挥重要作用 (8)。例如,癌细胞通过改变线粒体功能来适应缺氧,以实现最佳代谢和能量供应。低氧水平可诱导线粒体还原羧化并在癌细胞中产生活性氧 (ROS),从而诱导胰腺癌的快速发展 (9)。
哺乳动物大脑对氧气产生ATP的绝对依赖使其非常容易受到缺氧的影响,无论是在高海拔还是在贫血或肺病的临床环境下。缺氧对包括阿尔茨海默氏症,帕金森氏症和其他与年龄相关的神经退行性疾病在内的无数神经系统疾病的病原体至关重要。相反,减少了环境氧,例如。居住或居住在高较高的Alti tudes上,可能会对衰老和死亡率产生有利的影响。此外,受控的缺氧暴露可能代表与年龄相关的神经系统疾病的治疗策略。本综述讨论了缺氧的有益vs的证据。对衰老大脑的有害影响以及介导这些不同作用的分子机制。它借鉴了关于缺氧/高度对脑衰老的影响的广泛文献搜索,以及对所有已鉴定的研究的详细分析,这些研究直接比较了Young vs中的脑对缺氧的反应。老年人或啮齿动物。特别注意的是风险与缺氧暴露于老年人的好处,以及缺氧对神经退行性疾病的潜在治疗应用。最后,讨论了未来研究的重要问题。
P HILIPPE T ROCHET、{M ILAN K OPE CEK、{R ADEK J AK SA、║ L UD EK S EFC、* 和 P AVEL K LENER y、x T AGED E * 捷克共和国布拉格查理大学第一医学院高级临床前成像中心 (CAPI);y 捷克共和国布拉格查理大学第一医学院病理生理学研究所;z 捷克共和国比尔森查理大学比尔森医学院生物医学中心组织学和胚胎学系;x 捷克共和国布拉格查理大学第一医学院大学总医院第一医学-血液学系;{荷兰阿姆斯特丹 FUJIFILM VisualSonics;和 ║ 捷克共和国布拉格查理大学第一医学院大学总医院病理学研究所
引言人们早已认识到肿瘤具有免疫抑制作用,这解释了为什么肿瘤和肿瘤反应性免疫细胞可以在同一癌症患者体内和平共处(Hellstrom 悖论),也解释了为什么只有少数癌症免疫治疗患者能观察到持久反应(1、2)。受这一悖论的启发,我们小组的研究致力于解决这一重大问题,从而发现了一种基本的生化免疫抑制机制,该机制可保护重要器官免受抗病原体免疫反应的附带损害(3),并保护癌组织免受抗肿瘤免疫反应的损害(4)。在本综述中,我们总结了我们对缺氧/A2-腺苷酸免疫抑制的研究,这些研究已被其他几个小组证实和扩展,从而促成了目前对癌症抗缺氧/A2-腺苷酸免疫疗法的临床试验。这些试验通过防止抑制内源性发育或免疫疗法激活的肿瘤反应性免疫细胞,显示出了良好的结果(5、6)。为了进一步改善癌症免疫治疗,我们强调了氧合剂和呼吸性高氧相结合的优势
高级别胶质瘤 (HGG),包括胶质母细胞瘤和弥漫性内在性脑桥胶质瘤,是最致命的脑肿瘤之一。这些肿瘤的预后很差,平均生存期不到 15 个月。几十年来,放射疗法一直是治疗 HGG 的主要手段;然而,明显的放射抗性是放射治疗成功的主要障碍。在此,肿瘤缺氧被认为是 HGG 放射抗性的重要因素,因为氧合对于放射治疗的效果至关重要。缺氧通过上调缺氧诱导因子 (HIF) 在所有实体肿瘤(包括 HGG)的侵袭性和抗性表型中起着根本性的作用,这些因子会刺激在缺氧应激下负责癌症存活的重要酶。由于目前针对肿瘤缺氧的尝试主要集中在通过降低耗氧率 (OCR) 来减少肿瘤细胞的耗氧量,因此实现这一目标的一个有吸引力的策略是抑制线粒体的氧化磷酸化,因为它可以降低 OCR 并增加氧合,从而可以改善 HGG 的辐射反应。这种方法还有助于消灭放射抗性的神经胶质瘤干细胞 (GSC),因为它们主要依靠线粒体代谢来生存。在这里,我们强调了重新利用抗寄生虫药物来消除肿瘤缺氧并诱导 GSC 凋亡的潜力。目前的文献提供了令人信服的证据表明,这些药物(阿托伐醌、伊维菌素、氯胍、甲氟喹和奎纳克林)可以通过抑制线粒体代谢和肿瘤缺氧以及诱导 DNA 损伤等机制有效对抗癌症。因此,将这些药物与放射疗法相结合可能会增强 HGG 的放射敏感性。据报道,这些药物对胶质母细胞瘤的疗效及其穿透血脑屏障的能力为这些药物用于 HGG 治疗的良好结果和临床转化提供了进一步的支持。
分子氧(O 2)是一种通用电子受体,最终在所有后生动物的线粒体呼吸链中合成为ATP。因此,缺氧生物学已成为细胞进化,代谢和病理学的组织原理。缺氧诱导因子(HIF)介导肿瘤细胞,以产生一系列葡萄糖代谢适应,包括调节葡萄糖分解代谢,糖原代谢和葡萄糖对低氧的生物氧化。由于HIF可以调节癌细胞的能量代谢并促进癌细胞的存活,因此靶向HIF或HIF介导的代谢酶可能成为癌症的潜在治疗方法之一。在这篇综述中,我们总结了可以诱导肿瘤中低氧葡萄糖代谢的细胞重编程的既定且最近发现的自主分子机制,并探索了靶向治疗的机会。
肿瘤缺氧代表着一种严重的微环境应激,通常与酸中毒有关。癌细胞对这些应激的反应,基因表达的变化至少部分通过pH调节和代谢重编程促进生存。缺氧诱导的碳酸酐酶IX(CA IX)在催化水合细胞外CO 2对低氧和酸性环境中起着关键的适应性作用,以产生碳酸氢盐,以缓冲细胞内pH(PHI)。我们使用全蛋白质组的培养物来研究缺氧对短暂性CA IX敲低的细胞反应,发现关键的糖溶作酶和乳酸脱氢酶A(LDHA)的水平降低。有趣的是,LDH的活性也降低了,如天然凝胶活性测定法所示。这些变化导致体外癌细胞中糖酵解液和细胞外乳酸水平的显着降低,导致增殖降低。有趣的是,添加替代LDH底物α-酮丁酸酯恢复了LDHA活性,细胞外酸性,PHI和细胞增殖。这些结果表明,在没有CA IX的情况下,PHI的减少会破坏LDHA活性,并阻碍细胞的能力再生NAD +并将质子分泌到细胞外空间。缺氧诱导的Ca IX因此通过将细胞外CO 2转化为碳酸氢盐,并间接地通过维持糖酵解 - 渗透 - 渗透 - 渗透性的细胞内环向环境来直接介导对微环境缺氧和酸中毒的适应。