ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
网络上的信息扩散模型位于AI研究的最前沿。此类模型的动态通常是流行病学的随机模型,不仅用于模拟感染,还为各种现象建模,包括计算机病毒的行为和病毒营销活动。在这种情况下的一个核心问题是如何有效检测主体图中最有影响力的顶点,以使感染表现出最长的时间。在结合了顶点的重新感染的过程中,例如SIS过程,理论研究鉴于参数阈值,其中Prosess的生存时间从对数迅速转变为超级顺序。这些结果与启动配置相关的直觉与之相矛盾,因为该过程将始终快速死亡或几乎无限期地生存。这些结果的缺点是,迄今为止,尚未对结合短期免疫力(或创意广告疲劳)的模型进行过这样的理论分析。我们通过研究SIRS过程(一种更现实的模型)来减少文献中的这一差距,除了再感染外,还结合了短期免疫力。在复杂的网络模型上,我们确定了该过程成倍长期生存的参数制度,并且对于随机图,我们获得了一个紧密的阈值。基础这些结果是我们的主要技术贡献,显示了SIRS流程的生存时间的阈值行为,该过程具有大型扩展器子图(例如社交网络模型)。
大量工作表明,在行为过程中,神经种群表现出低维动力学。但是,有多种对低维神经种群活动进行建模的不同方法。一种方法涉及潜在的线性动力学系统(LDS)模型,其中通过具有线性动力学的低维潜在变量的投影来描述种群活动。第二种方法涉及低级别的复发性神经网络(RNN),其中人口活动直接来自过去活动的低维投影。尽管这两种建模方法具有很强的相似性,但它们在不同的情况下出现,并且倾向于具有不同的应用领域。在这里,我们检查了潜在LDS模型与线性低级别RNN之间的精确关系。什么时候可以将一种模型类转换为另一个模型类,反之亦然?我们表明,由于潜在LDS模型的非马尔可夫特性,潜在的LDS模型只能在特定限制情况下转换为RNN。相反,我们表明可以将lnns映射到LDS模型上,而潜在维度最多是RNN等级的两倍。我们结果的一个令人惊讶的结果是,部分观察到的RNN比仅由仅观察到的单位组成的RNN更好地代表了LDS模型。
背景:稳健且连续的神经解码对于可靠且直观的神经机器交互至关重要。本研究开发了一种新型通用神经网络模型,该模型可以根据解码的群体运动神经元放电活动连续预测手指力。方法:我们实施了卷积神经网络 (CNN) 来学习从前臂肌肉的高密度肌电图 (HD-EMG) 信号到群体运动神经元放电频率的映射。鉴于 EMG 信号本质上是随机的,我们首先提取 EMG 能量和频率图的时空特征以提高学习效率。然后,我们通过对多个参与者的群体神经元放电活动进行训练建立了一个通用神经网络模型。使用回归模型,我们实时连续预测单个手指力。我们将力预测性能与两种最先进的方法进行了比较:神经元分解方法和经典的 EMG 幅度方法。结果:我们的结果表明,通用 CNN 模型优于特定于受试者的神经元分解方法和 EMG 振幅方法,测量力和预测力之间的相关系数更高,力预测误差更低。此外,CNN 模型显示出随时间推移更稳定的力预测性能。结论:总体而言,我们的方法为实时和稳健的人机交互提供了一种通用且高效的连续神经解码方法。
人们认为,人类自适应地执行各种任务的能力源于认知信息的动态转换。我们假设这些转换是通过“连接中枢”的连接激活实现的。连接中枢是选择性整合感觉、认知和运动激活的大脑区域。我们利用最新进展,利用功能连接映射大脑区域之间的活动流,从认知控制任务期间的 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流,验证了连接中枢在认知计算中的重要性。这些经验指定的模拟通过在连接中枢整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接中心在支持灵活的认知计算中的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
摘要 我们研究了卷积神经网络 (CNN) 在加速双栅极 MOSFET 量子力学传输模拟(基于非平衡格林函数 (NEGF) 方法)中的应用。具体而言,给定电位分布作为输入数据,我们实现卷积自动编码器来训练和预测载流子密度和局部量子电容分布。结果表明,在 NEGF 自洽计算中使用单个训练好的 CNN 模型以及泊松方程可以为各种栅极长度产生准确的电位,并且所有这些都在比传统 NEGF 计算短得多的计算时间内完成。 关键词:纳米级 MOSFET、模拟、非平衡格林函数、卷积神经网络、卷积自动编码器 分类:电子器件、电路和模块
脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常
虚幻的轮廓和塑造突出了自然和人造视力如何感知世界之间的巨大差距。在这项研究中,我们表明,模式识别模型体现了一个生成模型,该模型整合了pi脚先验和感官处理。我们介绍了一种新型的感知算法,生成感知推理(GPI),该算法通过在早期层中积累传播误差来迭代地更新激活。鉴于Kanizsa正方形作为针对可靠对象分类的深神经网络(DNN)的输入,我们的结果表明,运行GPI导致了感知到的“白色广场”区域中类似边缘模式的出现。此外,当GPI用鲁宾的花瓶图像作为输入应用于同一DNN时,它会创建类似花瓶的模式,而GPI在具有相同体系结构的DNN中,但对面部识别进行了优化,从而创建了类似面部的模式。因此,我们通过可捕获有关动物和人类幻觉的实验发现的可构成图像计算算法发现了自然图像事先与虚幻轮廓和形状感知之间的直接联系。更广泛地,这项工作将视觉皮层的视图既是统一框架中的模式识别和生成模型。
摘要:脑信号可以通过脑电图 (EEG) 捕获,并用于各种脑机接口 (BCI) 应用。使用 EEG 信号对运动想象 (MI) 进行分类是帮助中风患者康复或执行某些任务的重要应用之一。处理 EEG-MI 信号具有挑战性,因为这些信号很弱、可能包含伪影、取决于患者的情绪和姿势,并且信噪比低。本文提出了一种多分支卷积神经网络模型,称为带卷积块注意模块的多分支 EEGNet (MBEEGCBAM),使用注意机制和融合技术对 EEG-MI 信号进行分类。注意机制应用于通道和空间。与其他最先进的模型相比,所提出的模型是一种轻量级模型,具有更少的参数和更高的准确性。所提模型在使用 BCI-IV2a 运动想象数据集和高伽马数据集时,准确率分别为 82.85% 和 95.45%。此外,在使用融合方法 (FMBEEGCBAM) 时,准确率分别达到 83.68% 和 95.74%。
摘要 本研究旨在建立神经网络模型,以研究乌克兰国家社会经济、投资和创新政策的主要变化,从而改善国家管理,形成以社会和创新为导向的国民经济。使用神经网络模型进行了数值试验。提出的神经网络模型基于乌克兰和世界领先国家的社会经济、投资和创新发展指标。神经模型采用了描述乌克兰 2000-2021 年国家政策结果的指标。开发的模型可以确定有助于乌克兰 GDP 增长的因素并预测该国经济增长。得出以下结果:公共固定投资和国家预算对创新活动的融资对国家经济增长的影响最大,国家预算中研发资金的增加和政府对教育的支出对经济发展同样重要。用于预测和评估国家社会经济、投资和创新政策的神经网络模型可以预测资源分配和预算的主要方向。