我们提出了一种受生物启发的循环神经网络 (RNN),它可以有效检测自然图像中的变化。该模型具有稀疏拓扑连接 (st-RNN),与“中脑注意网络”的电路架构紧密相关。我们将 st-RNN 部署到一个具有挑战性的变化视盲任务中,该任务必须在一系列不连续的图像中检测变化。与传统 RNN 相比,st-RNN 的学习速度提高了 9 倍,并且以减少 15 倍的连接实现了最佳性能。低维动力学分析揭示了假定的电路机制,包括全局抑制 (GI) 基序对成功变化检测的关键作用。该模型再现了关键的实验现象,包括中脑神经元对动态刺激的敏感性、刺激竞争的神经特征以及中脑微刺激的标志性行为效应。最后,该模型在变化盲视实验中准确预测了人类注视点,超越了最先进的基于显着性的方法。st-RNN 提供了一种新颖的深度学习模型,用于将变化检测背后的神经计算与心理物理机制联系起来。
a 西南科技大学计算机科学与技术学院脑科学与医学人工智能实验室,中国绵阳 b 电子科技大学生命科学与技术学院成都脑科学研究所临床医院神经信息教育部重点实验室、生物医学信息中心,中国成都 c 南洋理工大学计算机科学与工程学院,新加坡
大量工作表明,在行为过程中,神经种群表现出低维动力学。但是,有多种对低维神经种群活动进行建模的不同方法。一种方法涉及潜在的线性动力学系统(LDS)模型,其中通过具有线性动力学的低维潜在变量的投影来描述种群活动。第二种方法涉及低级别的复发性神经网络(RNN),其中人口活动直接来自过去活动的低维投影。尽管这两种建模方法具有很强的相似性,但它们在不同的情况下出现,并且倾向于具有不同的应用领域。在这里,我们检查了潜在LDS模型与线性低级别RNN之间的精确关系。什么时候可以将一种模型类转换为另一个模型类,反之亦然?我们表明,由于潜在LDS模型的非马尔可夫特性,潜在的LDS模型只能在特定限制情况下转换为RNN。相反,我们表明可以将lnns映射到LDS模型上,而潜在维度最多是RNN等级的两倍。我们结果的一个令人惊讶的结果是,部分观察到的RNN比仅由仅观察到的单位组成的RNN更好地代表了LDS模型。
摘要:脑信号可以通过脑电图 (EEG) 捕获,并用于各种脑机接口 (BCI) 应用。使用 EEG 信号对运动想象 (MI) 进行分类是帮助中风患者康复或执行某些任务的重要应用之一。处理 EEG-MI 信号具有挑战性,因为这些信号很弱、可能包含伪影、取决于患者的情绪和姿势,并且信噪比低。本文提出了一种多分支卷积神经网络模型,称为带卷积块注意模块的多分支 EEGNet (MBEEGCBAM),使用注意机制和融合技术对 EEG-MI 信号进行分类。注意机制应用于通道和空间。与其他最先进的模型相比,所提出的模型是一种轻量级模型,具有更少的参数和更高的准确性。所提模型在使用 BCI-IV2a 运动想象数据集和高伽马数据集时,准确率分别为 82.85% 和 95.45%。此外,在使用融合方法 (FMBEEGCBAM) 时,准确率分别达到 83.68% 和 95.74%。
摘要:“情绪”一词指的是个人对事件、人或条件的反应。近年来,研究情绪估计的论文数量有所增加。在本研究中,分析了一个基于三种不同情绪的数据集,该数据集用于使用脑电波对感觉进行分类。在数据集中,六个电影剪辑被用来引出男性和女性的积极和消极情绪。然而,没有触发引发中性情绪的触发器。已经使用各种分类方法来对数据集进行分类,包括 MLP、SVM、PNN、KNN 和决策树方法。研究人员表示,首次使用的 Bagged Tree 技术在本研究中取得了 98.60% 的成功率。此外,使用 PNN 方法对数据集进行了分类,成功率达到 94.32%。关键词:AdaBoost;袋装树;EEG 信号;情绪预测;多层感知器;概率神经网络 1 引言
基于机器学习 (ML) 的模型得出的关于大脑功能的计算显式假设最近彻底改变了神经科学 1、2。尽管这些人工神经网络 (ANN) 具有前所未有的能力来捕捉生物神经网络 (大脑) 中的反应 (图 1A;参见 3 进行全面评论),并且我们可以完全访问所有内部模型组件 (与大脑不同),但 ANN 通常被称为可解释性有限的“黑匣子”。然而,可解释性是一个多方面的构造,在不同领域有不同的使用方式。特别是,人工智能 (AI) 中的可解释性或可解释性工作侧重于理解不同模型组件如何影响其输出 (即决策)。相比之下,ANN 的神经科学可解释性需要模型组件和神经科学构造 (例如,不同的大脑区域或现象,如复发 4 或自上而下的反馈 5 ) 之间的明确一致性。鉴于人们普遍呼吁提高人工智能系统的可解释性 6 ,我们在此强调了这些不同的可解释性概念,并认为 ANN 的神经科学可解释性可以与人工智能的持续努力并行但独立地进行。某些 ML 技术(例如,深度梦境,见图 1C)可以在这两个领域中得到利用,以探究哪种刺激可以最佳地激活特定模型特征(通过优化实现特征可视化),或者不同特征如何影响模型的输出(特征归因)。然而,如果没有适当的大脑对齐,某些特征(图 1C 中模型的非蓝色部分)对于神经科学家来说仍然是无法解释的。
i vc irh 新冠疫情对发电厂总产能的影响 [无量纲] 新冠疫情对能源需求的影响 [无量纲] 一年中的天数 [无量纲] 单位政府补贴 [ ] 最高
代码异味是指源代码中任何违反设计原则或实现的症状或异常。及早发现不良代码异味可以提高软件质量。如今,几种人工神经网络 (ANN) 模型已用于软件工程的不同主题:软件缺陷预测、软件漏洞检测和代码克隆检测。使用 ANN 模型时,无需了解数据来源,但需要大量训练集。数据不平衡是人工智能技术在检测代码异味方面面临的主要挑战。为了克服这些挑战,本研究的目标是基于一组 Java 项目,提出具有合成少数过采样技术 (SMOTE) 的深度卷积神经网络 (D-CNN) 模型来检测不良代码异味。我们考虑了四个代码异味数据集,即 God 类、数据类、特征嫉妒和长方法,并根据不同的性能指标对结果进行了比较。实验结果表明,所提出的具有过采样技术的模型可以为代码异味检测提供更好的性能,并且当使用更多数据集训练模型时,预测结果可以进一步改善。此外,更多的时期和隐藏层有助于提高模型的准确性。
摘要:动态功能脑网络作为静态网络的扩展,能够展现脑部连接的连续变化,而受限于fMRI信号的长度,在动态网络的构建中难以展现出每一个瞬时时刻,且对信号结束后网络的动态变化缺乏有效的预测。
背景:稳健且连续的神经解码对于可靠且直观的神经机器交互至关重要。本研究开发了一种新型通用神经网络模型,该模型可以根据解码的群体运动神经元放电活动连续预测手指力。方法:我们实施了卷积神经网络 (CNN) 来学习从前臂肌肉的高密度肌电图 (HD-EMG) 信号到群体运动神经元放电频率的映射。鉴于 EMG 信号本质上是随机的,我们首先提取 EMG 能量和频率图的时空特征以提高学习效率。然后,我们通过对多个参与者的群体神经元放电活动进行训练建立了一个通用神经网络模型。使用回归模型,我们实时连续预测单个手指力。我们将力预测性能与两种最先进的方法进行了比较:神经元分解方法和经典的 EMG 幅度方法。结果:我们的结果表明,通用 CNN 模型优于特定于受试者的神经元分解方法和 EMG 振幅方法,测量力和预测力之间的相关系数更高,力预测误差更低。此外,CNN 模型显示出随时间推移更稳定的力预测性能。结论:总体而言,我们的方法为实时和稳健的人机交互提供了一种通用且高效的连续神经解码方法。