抽象密钥消息提出了一个原始的GWAS模型,该模型集成了等位基因的祖先,并允许探测背景特定的添加剂和优势QTL,涉及异性群互补性和混合性能。抽象的玉米遗传多样性被构造成彼此选择和改善的遗传群体。此过程会随着时间的流逝而增加组的互补性和分化,并确保由小组间杂交产生的杂种表现出较高的表现和异性症。为了确定与混合性能和杂种群体互补涉及的基因座,我们引入了一个原始的关联研究模型,该模型将等位基因的异性群的起源与异性构成群体分离,并将其与常规的添加剂/优势模型进行了比较。这个新模型应用于凹痕和弗林特线之间的阶乘,以及具有两种不同分析层的凹痕混合线之间的拨号线:在每个环境中和多种环境中。我们确定了所有特征的几个强大的添加剂QTL,包括一些用于开花时间的众所周知的加性QTL(在染色体8上的VGT1/2区域)。屈服特征在拨号面板中显示出显着的非加性效果。大多数检测到的产量QTL表现出过度势力或更有可能的伪过分效应。在这些QTL上明显过度污染,导致了遗传组互补性的一部分。环境之间的比较显示,添加QTL效应的稳定性高于非添加效应。我们还揭示了显示遗传群起源作用的大型染色体区域。根据局部杂种群的起源,几个QTL显示出效应的变化。总的来说,我们的结果说明了混合面板如何与专用的GWAS建模相结合,允许识别新的QTL,这些QTL无法通过通过传统建模分析的经典混合面板无法揭示的新QTL。
简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。
tick传播的立克斯曲霉是由立克属的革兰氏阴性细菌引起的,构成了日益增长的全球威胁,各种节肢动物载体为它们的传播做出了贡献。了解壁虱微生物群中的复杂相互作用,包括立克氏症的作用,对于阐明立克疾病的动力学至关重要。在这里,我们研究了RH的Rickettsia的分类学概况和共发生网络。sanguineus sensus lato(s.l.)和RH。turanicus tick虫,揭示了立克群体的社区组成和局部连通性的显着差异。虽然这两个壁虱物种的微生物群都有共同的分类单元,但相对丰度和网络拓扑的明显差异表明了独特的生态壁ches。此外,鲁棒性分析表明对扰动的韧性有所不同,这表明网络组织的策略不同。我们的发现还强调了tick物种之间的代谢差异,这表明对立克相互作用的潜在影响。总体而言,这项研究提供了有关壁虱中复杂的微生物景观的见解,从而阐明了与立克相关的功能冗余和代谢途径,从而促进了我们对tick传播疾病的理解。
兴奋剂使用是一个重要的健康问题。在2018年,在过去的12个月(1)中,男性中有2.8%和1.5%的女性使用可卡因,这是2019年欧洲接近的数字,在过去的12个月中,有2.1%的15至34岁儿童在过去12个月中服用了可卡因,在过去的12个月中,Amphetamines,1.4%的Amphetamines,1.4%的Amphetamines,1.9%MDMA(3; 3,4,4-毫秒)(3,4-4-METHYLEND)。在法国,这些数字甚至更高(分别为3.2、0.6和1.3%)(2)。使用新合成药物,包括Cathinones和非刺激合成大麻素,估计在欧洲同一人群中为1.1%。对于甲基苯丙胺来说,一些国家将其包括在其苯丙胺使用数据中,并且患病率似乎是高度可变的,在每个国家 /地区风险的330至34,600位用户之间。刺激物使用,包括可卡因,都有许多后果,包括体细胞(梗死,肺部不适,中风。。。 )(3,4),精神病学(焦虑症或诱发的精神病症状发病率更高)(5,6)和社会后果。此外,从2010年到2014年,在美国,每年40,000次过量服用过量的刺激剂(可卡因或甲基苯丙胺)中的平均7,500,每年使用这些物质过量的药物有所增加(7)。
本章的目的是概述 - 高压釜(OOA)预处理的处理方面。本章是针对工具定义,装袋配置和处理条件的设计指南,用于制作OOA预处理。第一部分概述了OOA材料,包括其应用,树脂和纤维。OOA预处理浸渍技术,并总结OOA复合材料的典型特性。第二部分涵盖了OOA预处理特征方法,测量树脂浸渍的技术,热化学,外部时间,渗透性和批量因素。第三部分描述了用于治愈OOA预处理的基础架构,例如烤箱,加热系统,工具和过程诊断工具。第四部分提供了基本的处理指南,涵盖了包装配置,删除方法和治疗周期以制造简单的单片OOA层压板,而第五和第六部分则提供了三明治面板和复杂形状层压板的处理指南。在第七节中对使用OOA预处理进行制造过程的成本分析。最后,第八节讨论了OOA预处理材料和过程的未来发展。
生物传感器是包含生物识别元件的分析设备,可捕获分析物和换能器,以将识别相互作用转换为可测量的信号。生物学识别元件可以是核酸(DNA和RNA),适体,肽,酶,抗体和微生物。生物识别元件的生化特性使生物传感器高度敏感和高度选择性对于检测分析物,在测试样品中存在其他生物活性分子或物种的情况下,最小干扰。传感器将生物识别事件转换为可测量的信号,该信号可能是电化学的(安培计量法,电位计和损伤法),光学的(例如等化性,发光和比色),压电,微力机械等。生物传感器提供了许多有吸引力的优势,包括高灵敏度和特异性,快速响应,相对紧凑的大小以及用户友好且具有成本效益的操作,从而允许时间分析。因此,生物传感器在许多应用领域都有非常有希望的未来,包括疾病和健康监测的早期诊断。
1全球粮食安全研究所,生物科学学院,贝尔法斯特皇后大学,贝尔法斯特19号,贝尔法斯特,英国BT9 7BL。2海湾地区环境研究所,NASA AMES研究中心,加利福尼亚州山景,94035。3 NASA AMES研究中心,加利福尼亚州山景,94035。4罗马萨皮恩扎大学生物学与生物技术系,意大利00185。5西弗吉尼亚大学地质与地理系,摩根敦,西弗吉尼亚州,26506-6300。 6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。 7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。 8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。 9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。 10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。 11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。 12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。 13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。5西弗吉尼亚大学地质与地理系,摩根敦,西弗吉尼亚州,26506-6300。6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。 7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。 8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。 9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。 10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。 11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。 12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。 13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。6拉脱维亚大学微生物学与生物技术研究所,耶尔加瓦斯·斯特。7博洛尼亚大学生物,地质与环境科学系,波洛尼亚大学,意大利40126。8托斯西亚大学生态与生物科学系,维特尔博,01100,意大利。9意大利南极国家博物馆(MNA),真菌学部分,热那亚,16128年,意大利。10地球与行星物理学的主要实验室,地质与地球物理学研究所,中国科学院,北京,中国100029。11地球与行星科学系,新墨西哥州新墨西哥州,新墨西哥州阿尔伯克基,87131。12 CNR,CTR Biophys Mol UPR 4301,Rue Charles Sadron,CS 80054,Orleans,F-45071,法国。13海洋生物资源与生物技术研究所,Irbim-CNR,墨西拿,98122,意大利。
此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.18.25321172 doi:medrxiv preprint
摘要——在脑机接口(BCI)领域,学习模型通常针对每个受试者和每个会话分别进行训练,因为不同会话和不同受试者之间的数据并不一致。这里我们提出了一种小组学习的方法,即在联合调整多个主题和/或课程之后,使用它们同时进行学习。我们的方法受到盲源分离文献的启发。作为演示,我们在 22 个受试者的数据集上训练单一学习模型,并应用该组模型对所有受试者进行类似地预测测试数据。与传统的单独训练测试设置相比,我们观察到平均精度显著提高了 6.8 个点。我们的方法是通用的,可以用于任何应用程序。它还可用于训练需要大量数据的学习模型,例如深度神经网络。
摘要背景:糖尿病,肥胖和高血压等慢性疾病的管理是全球主要的健康挑战,尤其是在最弱势群体的人群中。除了这些疾病的生物医学管理之外,考虑到人民的经济和社会状况的全面支持是基本的。本范围审查的目的是在处境不利的,移民或少数群体中对这些慢性疾病的不同类型的支持创建库存和分析,以促进对这些疾病遭受这些疾病的易受伤害人群的全球支持的定义和表征。方法:对PubMed,Psycinfo,Sages Journals和Web Science进行了搜索(在3月至2021年5月之间),以2000年1月至2021年5月之间发表的文章。文章。结果:我们包括16篇文章。这些文章中描述的糖尿病,肥胖和高血压支持计划旨在改善身心健康和获得护理。这些干预措施的方法集中在人的培训和参与上,并实施适合该人的支持行动。这些干预措施中的大多数对社区具有真正的依恋。结论:对文献的这一综述表明,对糖尿病,肥胖或高血压等慢性疾病患者的支持基于三个支柱:赋权,同伴调解以及对个人的整体支持以及量身定制的支持。授权方法考虑了个体的能力和资源,其目标是增强其对健康的能力,似乎完全适合支持这些慢性疾病。这篇审查强调了从生物医学方法转向真正关注人,其能力及其需求的整体方法的重要性。关键词:糖尿病,肥胖,高血压,患者教育,人口健康管理,脆弱人群
