玻璃化转变温度 (Tg) 是了解环氧树脂系统热特性的一个非常有用的属性。Tg 是环氧树脂从玻璃态(固体)转变为柔软橡胶态时的温度。可以认为 Tg 是暴露于高温导致物理性能发生可测量下降的点。请注意,Tg 值可以在第二次加热后报告。第二次加热是在样品暴露于初始第一次加热后对其进行测试的过程,这会导致样品在固化后温度升高到 392°F (200°C)。第二次扫描测试有助于了解树脂系统固化后暴露的结果,在许多情况下,这可以提高规定的耐高温性。
然而,这些解决方案可以分为四个独立的部分,可以单独使用或作为组合解决方案的一部分使用。它们是浸没、隔离、绝缘和扩散。浸没利用机械泵送和冷却系统(主动热管理),是解决与热相关的问题的更昂贵和更复杂的方法。不太复杂且成本较低的是被动隔离、绝缘和扩散热管理方法,它们结合了我们在 JBC 转换的性能材料。被动热管理依赖于性能材料固有的物理特性。例如,具有耐高温和固有低热导率的材料在隔离极端热量方面表现出色。其他材料利用热导率、发射率和相变化学等特性,有效地将热量从敏感组件转移到周围环境中,和/或将其分散到更宽的表面上,以最大限度地减少电池组内的热点。
全氟或多氟烷基物质(PFAS)是一个由几千种化合物组成的大家族。按照经合组织的定义,这些分子是由或多或少长的碳原子链组成的,线性、支化或环状的分子,并且含有至少一个氟化基团(甲基或亚甲基),饱和且完全氟化。该氟碳骨架上可以添加不同的功能团,从而赋予这些分子不同的物理、化学和毒理学特性。它们具有多种特性(不粘、防水、耐高温),自 20 世纪 50 年代以来,这些特性促使了它们被制造出来,并在多个工业领域得到使用。PFAS 是一种非常持久的分子,广泛分布于环境中并具有生物累积性。
在我们朝着成为一家材料公司的目标迈进之际,展望未来并思考 2020 年可能发生的事情是明智之举。但首先,让我们快速回顾一下。在过去的两年中,我们进行了有针对性的收购以获取知识和专业技能,并且我们收购了美国四家主要的复合材料技术公司。我们的旅程始于 Fabric Development Inc. 和 Textile Products Inc.。随着对 Advanced Honeycomb Technologies 的收购,我们的能力得到了扩展。最后,通过收购 Axiom Materials,我们在北美创建了一个增长平台,而北美是航空航天工业的增长中心。随着对高温材料的需求增加,氧化物-氧化物陶瓷基复合材料作为高温部件的主流材料选择越来越受到关注。通过收购 Axiom Materials,我们已成为全球合格的耐高温氧化物-氧化物陶瓷基复合材料制造商之一。
• 可持续发展目标简介:可持续目标的定义和类型、可持续发展目标概述和具体目标,• 巴基斯坦和可持续目标:零饥饿和巴基斯坦、饥饿类型、气候变化和巴基斯坦,• 巴基斯坦农业部门:巴基斯坦实现零饥饿农业概述、巴基斯坦农业问题、粮食安全问题、常规育种与分子育种、耐热农作物、基于标记辅助选择的作物生产、生物肥料。• 非生物作物和生物作物:抗旱作物、耐盐作物、耐高温和低温胁迫、抗病毒作物、抗虫作物、抗除草剂作物、通过 CRISPR-Cas 基因组编辑技术生产的抗病作物、通过应用纳米技术控制昆虫;几丁质酶的使用、生物农药、与转基因作物有关的食品安全和环境问题。• 有价值的作物:生物强化、黄金大米
显示 DDS 使用高对比度反射式 LCD 屏幕,该屏幕经过定制设计,可在直射阳光和人造光下轻松观看,并配有可选的可调节背光,可在弱光或夜间条件下实现最大可见度。耐高温性确保 DDS 在所有条件下始终可靠。显示屏具有三种可编程显示模式或层,它们彼此独立运行。这样可以在适当的时间向驾驶员/机组人员显示相关信息,而不会造成不必要的屏幕混乱。70 段曲线条形图可以配置为显示任何通道,并带有可选的峰值保持和移位/提示标记。每个数字显示字段都可编程为显示任何值,并且可以通过用户定义的条件覆盖。屏幕底部的十三个字母数字可用于显示通道值、消息和警告警报。共有 20 行文本可用,可使用外部用户控件滚动,并且有四个可编程覆盖。
摘要 CRISPR/Cas9 和 Cas12a (Cpf1) 工具已大规模用于基因组编辑。最近建立了一种具有单个核酸酶结构域、相对较小尺寸、低频率脱靶效应和高温下切割能力的新效应物,并将其命名为 CRISPR/Cas12b (C2c1)。Cas12b 还表现出在哺乳动物系统中的温度诱导性。因此,该系统对于编辑耐高温植物物种(如棉花)的基因组具有潜在价值。利用这种新系统,在一系列温度下通过农杆菌介导的遗传转化成功生成了陆地棉突变体。暴露在 45°C 下 4 天的转化子(被农杆菌感染的外植体)显示出最高的编辑效率。全基因组测序未检测到脱靶突变。T0 代中 AacCas12b 进行的基因组编辑忠实地传递给了 T1 代。综上所述,CRISPR/Cas12b 是一种高效、精确的棉花基因组编辑工具。
在 60 年代末和 70 年代初,人们意识到需要可重复使用的隔热罩来为航天飞机轨道器系统提供热保护。因此,艾姆斯研究中心着手开展一项计划,以开发可重复使用的陶瓷纤维绝缘技术的内部能力。多年来,艾姆斯研究中心一直是美国领先的隔热罩材料气动对流测试中心之一,使用我们广泛的电弧等离子体测试设施(参考文献 1)。为了促进这种新材料的开发(预计用于航天飞机),我们认为了解材料特性和制造工艺非常重要。随着我们内部能力的提高,我们将目标扩大到开发耐高温、更耐用、更坚固、更坚硬和更柔韧的陶瓷隔热罩材料。到 20 世纪 70 年代中期,该计划带来了重大的新材料开发。其中包括改进的涂层(参考文献 2)、更坚固、更耐高温的瓷砖材料(参考文献 3)以及对材料空气对流和机械测试的支持技术的大量贡献(参考文献 4)。
一般信息 微处理器:32 位高性能制造质量标准 电源 高 RFI 抗扰度 电池反接保护和电池瞬态保护 环境工作温度范围 尺寸:180mm x 91mm x 18mm(不包括连接器) 重量:385gms(0.85lbs)Autosport 连接器 保修:2 年零件和人工 显示屏 定制反射式 LCD、高对比度、耐高温 背光 LCD 显示来自传感器、CAN 总线、RS232 或计算的任何值 显示模式 70 段条形图,带有用户可定义范围和通道源 条形图上的可编程峰值保持和设定点 4 个数字显示项 13 位字母数字显示区 - 每行 1、2 或 3 个通道 警报显示覆盖顶部、左侧/右侧 底行数(覆盖) 输入 模拟电压输入 模拟温度输入 数字输入 速度输入 开关输入 宽带 Lambda 通道 扩展单元: E888:8 个 AV 输入、8 个热电偶、4 个数字输入(20 个输入) E816:16 个 AV 输入、4 个数字输入(20 个输入)