在这里,我们使用MMS数据以新的细节显示EDR附近的能量通量密度的性质以及两侧的排气。我们在2015年10月16日在13:07:02.2 UT检查了EDR遭遇[24,29]。这是一个不对称的重新连接事件,其平面外(指南)磁场[30]。尽管总体离子能量通量密度行为与先前的结果一致,但离子热通量密度逆转,针对EDR。更令人惊讶的是,EDR附近的平面外电子通量密度非常明显,其幅度与流出中的离子能通量密度相当。常规2D模型通常会忽略此通量密度,因为它不会导致净能通量进入扩散区域,但是此类模型可能不足以捕获与颗粒加速度,传输和波浪产生有关的磁性能量传输过程。这种通量还表明,即使磁性重新连接几何形状往往是局部二维的,即使磁性重新连接几何形状可能存在中尺度和宏观尺度的三维效应。
案例 ID 框大小 R λ ˙ E [cu] k max η K η K [cu] IL 11 /η KL /L 11 N p [#] DNS 1.1 512 74 0.4 3 0.015 0.01 41.2 161 10000 DNS 1.2 512 74 0.4 3 0.015 0.05 41.4 160 10000 DNS 1.3 512 74 0.4 3 0.015 0.10 41.3 160 10000 DNS 1.4 512 74 0.4 3 0.015 0.24 41.3 21 10000 DNS 1.5 512 74 0.4 3 0.015 0.50 41.4 16 10000 DNS 2.0 1024 142 0.4 3 0.007 0.11 99.0 332.8 1000 DNS 2.1 1024 219 0.4 3 0.007 0.01 147.8 15.6 1000 DNS 2.2 1024 217 0.4 3 0.007 0.06 147.6 15.7 1000 DNS 2.3 1024 216 0.4 3 0.007 0.11 147.9 15.6 1000 DNS 2.4 1024 212 0.4 3 0.007 0.27 146.8 15.7 1000 DNS 2.5 1024 207 0.4 3 0.007 0.53 145.5 15.8 1000 DNS 3.1 2048 302 0.5 3 0.003 0.01 260.9 13.6 1000 DNS 3.2 2048 299 0.5 3 0.003 0.05 258.2 13.8 1000 DNS 3.3 2048 295 0.5 3 0.003 0.11 254.8 14.0 1000 DNS 3.4 2048 314 0.5 3 0.004 0.26 275.6 20.2 1000 域名3.5 2048 321 0.5 3 0.004 0.53 282.9 14.7 1000 表 2. 每个 DNS 的参数概览。R λ 为泰勒尺度雷诺数,˙ E 为代码单位(cu)中的能量注入率,k max 为最大解析波数,η K 为柯尔莫哥洛夫长度尺度,I = σ u ′ 1 /U 为湍流强度,L 11 为由 E ( κ ) 导出的纵向积分长度尺度,L 为平均探针轨道距离,N p 为虚拟探针的数量。湍流强度 I 通过设置探针平均速度来控制,其中 σ u ′ 1 ≈ 1 为均方根纵向速度波动。
摘要量子点蜂窝自动机(QCA)代表新兴的纳米技术,该纳米技术有望取代当前的互补金属 - 氧化物 - 氧化物 - 氧化电导剂数字整合电路技术。QCA构成了一种极为有希望的无晶体管范式,可以将其降低到分子水平,从而促进TERA级设备的整合和极低的能量耗散。可逆QCA电路的可逆性从逻辑级别降低到物理水平,可以执行比Landauer能量限制(KBTLN2)耗散能量更少的计算操作。逻辑门的时间同步是必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了逻辑和物理上可逆的时间同步QCA组合逻辑电路的八个新的设计和仿真。此处介绍的新电路设计减轻了时钟延迟问题,这些问题是由逻辑门信息的非同步,通过使用固有的更对称的电路配置引起的。模拟结果证实了提出的可逆时间同步QCA组合逻辑电路的行为,该逻辑电路表现出超大的能量耗散,并同时提供了准确的计算结果。
摘要:通常用狭窄油通道的牵引力变压器使用ODAF或“定向空气强制的油”方法冷却,在该方法中,其温度在很大程度上取决于绕组的焦油热量,变压器中的共轭热传递,以及通过油冷却器的二次热量释放,以及油泵产生的油液液泵。既不有资格预测这种类型的变压器中的时间和空间温度变化,均未获得热 - 电动类比和CFD模拟方法。 在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。 然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。 另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。 最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。均未获得热 - 电动类比和CFD模拟方法。在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。
最近,几项涉及具有强对称性的开放量子系统的研究发现,主方程的蒙特卡罗解法中的每一条轨迹都会动态地选择一个特定的对称扇区,在长期极限内“冻结”在其中。这种现象被称为“耗散冻结”,在本文中,我们通过介绍该问题的几个简单的数学观点,认为这是开放系统中存在强对称性的普遍结果,只有少数例外。我们使用许多示例系统来说明这些论点,揭示了非对角对称扇区中刘维尔谱特性与冻结发生所需时间之间的明确关系。在这些扇区中出现纯虚特征值的特征模式的极限情况下,冻结不会发生。此类模式表明系统对称扇区之间信息和相干性的保存,并可能导致非平稳性和同步等现象。单个量子轨迹水平上没有冻结现象,这为识别这些无迹模式提供了一种简单、计算有效的方法。
两个量子系统之间的单向非互易相互作用通常用级联量子主方程来描述,并依赖于时间反转对称性 (TRS) 的有效破坏以及相干和耗散相互作用的平衡。在这里,我们提出了一种获得非互易量子相互作用的新方法,它与级联量子系统完全不同,并且通常不需要破坏 TRS。我们的方法依赖于任何马尔可夫林德布拉德主方程中存在的局部规范对称性。这种新型量子非互易性有许多含义,包括一种在目标量子系统上执行耗散稳态酉门操作的新机制。我们还引入了一种新的、非常通用的基于量子信息的度量来量化量子非互易性。
具有异质整合技术的Hutonic Integrated Ciress(PIC)已成为硅光子学的激烈研究领域。1 - 3)他们将不同的材料技术引入商业硅芯片的潜力为将高性能图片与各种光学功能进行大规模整合开辟了道路,使用常规的硅开机器(SOI)平台实现了具有挑战性的挑战。4 - 6)尤其是,通过直接键合的混合III - V/SOI激光器的杂基整合为电信光源提供了适当的解决方案,用于电信和数据中心应用程序接近1.3和1.55μm波长范围。2,7)通过使用分布式的bragg refector,Ring Resonator和Loop Mirror设备,通过使用分布式的Bragg Remotector和Loop Mirror设备来实现在SOI电路内的这种集成在SOI电路内的这种集成。8 - 12)此外,还报道了Hybrid III - V/SOI环激光器,其中光线从III - V/SOI环激光器耦合到通过方向耦合器耦合到Si Bus-WaveGuide。13 - 16)
纠缠态的制备和保存是任何量子信息平台的基石。然而,量子信息科学中最强大的对手是不必要的环境影响,例如退相干和耗散。在这里,我们讨论如何控制和利用系统与环境耦合产生的耗散,为量子机器学习提供静止的纠缠态。为此,我们设计了一个耗散量子通道,即与压缩真空场库相互作用的双量子比特系统,并通过求解相应的主方程来研究通道的输出状态,特别是在小压缩范围内。我们表明,通道的时间相关输出状态是所谓的双量子比特 X 状态,它可以概括许多纠缠的双量子比特状态系列。此外,通过将一般的贝尔对角态视为系统的初始状态,我们发现这种耗散通道在稳态状态下会产生两类众所周知的纠缠混合态和类沃纳态。此外,该通道提供了一种有效的方法来确定给定的初始状态是否会导致静止纠缠态。最后,我们研究了设计的双量子比特通道在量子机器学习中的潜在应用。将双量子比特通道的非幺正变换与并行处理的神经计算相结合,建立了有意义的量子神经网络的要求。关键词:耗散双量子比特通道;量子机器学习,静止纠缠态;压缩水库
摘要:由于存在强烈的失相过程,基于半导体量子点 (QD) 平台的单光子源 (SPS) 仅限于低温 (T) 操作。尽管 QD 在光腔中的集成可以增强其发射特性,但在高 T 下保持高不可区分性 (I) 的技术要求仍然超出了当前技术水平。最近,新的理论方法通过实现双偶极耦合发射系统已经显示出有希望的结果。在这里,我们提出了一个基于优化的五偶极耦合发射系统平台,该系统耦合到腔体,可在高 T 下实现完美的 I。在我们的方案中,使用完善的光子平台可以实现具有耗散 QD 的完美 I 单光子发射。对于优化过程,我们开发了一种新颖的机器学习方法,该方法可以显着减少高要求优化算法的计算时间。我们的策略为优化不同光子结构用于量子信息应用开辟了有趣的可能性,例如减少耦合的两级量子系统簇中的量子退相干。
摘要:住宅社区向可再生能源转型是实现能源部门脱碳、减少二氧化碳排放和减缓全球气候变化的第一步。本研究为开发由风能和太阳能供电的微电网提供了信息,该微电网可满足北德克萨斯州一个拥有 10,000 户家庭的社区的每小时能源需求;氢气被用作储能介质。结果分为两种情况:(a) 可再生能源仅满足社区的电力需求;(b) 这些能源既满足社区的电力需求,又满足社区的供暖需求(用于空间供暖和热水)。结果表明,这样的社区可以通过风能和太阳能装置的组合实现脱碳。能源存储需求在每户 2.7 立方米到每户 2.2 立方米之间。存储再生过程中存在大量耗散——接近当前年电力需求的 30%。该社区的全面脱碳(电力和热力)将减少约87,500吨二氧化碳排放。