• 开发了 AM 翼型冷却设计和校正系数,使燃气轮机入口温度相对于最先进的涡轮机提高 100°C,而无需增加冷却剂质量流量。
摘要:由于气候变化和能源需求的增加,新能源技术变得越来越重要,它们显示出缓解环境问题的巨大潜力。为了最大限度地利用可再生能源,热电联产系统被认为更有效、更经济、更环保。然而,基于可再生能源的热电联产系统仍处于发展阶段。因此,本研究提出了一种新方法,利用风能和太阳能光伏系统生产热电联产,以满足小型分布式社区的能源需求。为此,开发了一个优化模型,以合理利用可再生能源发电,满足两个选定社区的电力和供暖需求。太阳能和风能系统的削减能源被热负荷控制器与天然气锅炉结合使用,用于产生热量。开发的模型还与电网集成,用于能量交换。本研究还有助于评估热电联产系统的经济和环境可行性,并确定最佳最优运营策略,以扩大可再生能源利用并最大限度地降低能源成本。结果表明,可以生产大量清洁能源,满足选定社区 79% 的能源需求,最低平准化能源成本为 0.013 欧元/千瓦时;同时,所提出的系统每年可减少 4129 吨二氧化碳排放量。
欧洲能源转型计划设立了明确的目标,即在绿色协议能源政策框架下到 2050 年实现气候中和的欧洲 [1]。欧盟委员会于 2021 年通过的“Fit for 55 0”一揽子计划为欧盟 2030 年气候和能源框架引入了更为严格的立法措施,包括可再生能源、能源效率、努力分担和排放标准立法、土地使用和林业以及能源税指令 [2]。现有的欧盟立法框架已被用于实施绿色协议愿景,明确表明未来能源结构中可再生能源 (RES) 的比重将增加,以及排放交易体系 (ETS) 对所有能源部门实施更严格的脱碳机制。太阳能和风能的不断普及极大地激励了电网的脱碳。然而,向欧盟碳中和能源系统有效利用低碳和可再生能源需要扩展到热力和运输领域,同时促进供应安全。通过结合节能和用电子燃料(基于电力生产氢气、合成气体和液体)取代化石燃料,可以将可再生能源发电系统的规模扩大 2 到 2.5 倍 [3],从而实现最终能源需求领域的气候中和。通过提高电气化程度实现的能源转型不仅对能源系统提出了巨大的挑战,包括太阳能和风能发电场的巨大容量和投资,而且对供应安全以及技术、经济和监管层面所需的额外措施也提出了挑战。目前,德国 [4]、美国 [5] 和中国 [6] 的可再生能源渗透率较低,已经报道了可再生能源的削减,导致可再生能源浪费和市场电价为负。电力供需时间间隔方程既需要运行单元的灵活性和同步性,也需要额外的能源储存措施、部门耦合和电网基础设施升级,以及高效的多国综合系统和市场,以经济高效地平衡可变可再生能源发电[7]。2050 年欧盟碳中和系统的能源建模研究解决了多功能能源储存技术的需求,以避免在可再生能源可用性高时通过负荷转移和灵活性进行削减,以及避免在可再生能源可用性低时进行负荷削减[3,8]。特别是,由于储存需求与总发电量的非线性增长有关,氢气和合成燃料形式的季节性能源储存被认为非常重要,因为报告称,电子燃料在最终能源中的份额为 20%。
图 3-6。美国平均电池存储历史 O&M 成本数据($/kW-yr-DC,2022 年 $)按客户部门划分 ............................................................................................................................. 37 图 3-7。固定式储能电池化学市场份额及预测所有部门,2015-2030 年 ................................................................................................................................... 46 图 4-1。美国平均住宅分布式风电项目成本数据(2015-2022 年,2022 年 $) ...................................................................................................................... 52 图 4-2。美国平均小型商业分布式风电项目成本数据(2012-2022 年,2022 年 $) .................................................................................................................................... 53 图 4-3。美国平均中型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................................. 53 图 4-4。美国平均大型商业分布式风电项目成本数据(2012-2022,2022 年美元) ............................................................................................................................. 54 图 4-5。2013 年美国本土的年度日平均互补性(以皮尔逊相关系数表示) ............................................................................. 56 图 5-1。美国平均家用燃料电池系统资本成本(美元/千瓦-交流电,2022 年美元) ................................................................................................................................................ 61 图 5-2。美国商用燃料电池系统平均资本成本(美元/千瓦时-AC,2022 年美元) ........................ 62 图 5-3。美国家用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-4。美国商用燃料电池系统平均 O&M 成本(美元/千瓦时,2022 年美元) ........................ 63 图 5-5。太阳能光伏 + 燃料电池混合能源系统图 ............................................................................. 65 图 5-6。使用 M2FCT 开发的催化剂的膜电极组件性能测试结束进展,2021-2023 年 ............................................................................................................. 67 图 6-1。美国年度商业热电联产安装量(2012-2022 年) .............................................................. 70 图 6-2。美国年度工业热电联产安装量(2012-2022 年) .............................................................. 71 图 6-3。美国平均商业热电联产系统资本成本(美元/千瓦时,2022 美元).................................... 80 图 6-4。美国平均工业热电联产系统资本成本(美元/千瓦时,2022 美元)........................ 81 图 6-5。美国平均商业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 6-6。美国平均工业热电联产系统运营和维护成本(美元/千瓦时,2022 美元)........................ 82 图 7-1。按行业部门按数量和兆瓦-交流划分的热电联产系统数量和总容量... 89 图 7-2。制造业热电联产系统数量和总容量(按数量和 MW-AC 划分)(按 3 位数 NAICS)............................................................................................................. 90 图 7-3。热电联产系统数量和总容量:按数量和 MW-AC 划分的前 10 个五位数 NAICS 行业............................................................................................................. 91 图 7-4。电池存储的年度和累计市场预测 ............................................................................. 96
可再生能源(RES)主要由太阳能,风,生物量,水力发电,地热和潮汐能组成。这些能量被称为可再生,因为它们是自然,清洁且取之不尽的[1]。在过去的几十年中,由于化石燃料储量迅速和气候变化的关注,全球范围内的重点一直转移到RES作为能源发电的手段[2]。但是,由于自然资源的间歇性质(例如,太阳和风),低效率(相对于化石燃料)以及可再生能源技术(RET)的昂贵部署成本,因此向可再生能源的过渡并不像它所需的那样无缝[3]。生物量目前是为了克服这些修复的尝试,因为它比常规RET较低,效率更低,并且独立于自然资源[4]。有两种主要方法可以利用这种可再生能源,即燃烧和厌氧消化(AD)。燃烧是通过燃烧生物块(有机废物)和热量形式恢复能量的,可直接用于加热或进一步转化为电力。至于AD,它涉及有机物的生物降解(农产品,纸废物等)在没有氧气的情况下,细菌(可通过添加动物粪便或市政废水提供)。 这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。 与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。。这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。广告过程已被证明是生产能量的一种可靠且可持续的方法,
(1) 本法规定了可再生能源和高效热电联产电厂生产和消费电力的规划和激励措施。此外,本法还规定了可再生能源和高效热电联产电厂生产的激励措施;规定了可再生能源和高效热电联产电厂生产激励制度的实施;规定了在国有土地上建设可再生能源和高效热电联产电厂的问题;规定了可再生能源和高效热电联产项目、项目持有人和合格可再生能源和高效热电联产电力生产商的登记管理;规定了可再生能源领域的国际合作以及与可再生能源和高效热电联产使用相关的其他问题。
MF 2024-1 CZ 0-011 卡尔维纳热电厂脱碳 - 部分:热电联产多燃料锅炉和热电联产燃气热电联产装置
我国长三角地区除热电联产外,暂停审批新的火电项目,并大力推进热电联产技术创新。但能源技术创新已被证明常常受到空间要素的影响,尚未在热电联产背景下探讨能源行业空间集聚对技术创新的作用。因此,本文通过全局莫兰指数、核密度分析和热力图分析,研究热电联产技术创新点要素的空间集聚及演化特征,并通过空间回归模型分析其影响因素及变化。研究结果表明,环境规制和高科技园区集聚是影响热电联产技术创新的关键因素,预示未来的政策制定需要考虑绿色发展的经济因素以及高科技园区在创新中的作用。
热电联产 (CHP) 技术使用可再生能源作为燃料,将成为提高能源安全性的有前途的解决方案。本报告旨在研究基于可再生能源的热电联产技术,寻求提高其效率并降低可再生资源的不可持续性,然后从经济和技术角度审查现有文章。热电联产技术同时产生热能和电力;热量是这个问题的限制因素。因此,它应该安装在需要热量和人口密度的地方,因为在这种情况下传输损耗会减少。在用作热电联产发电厂燃料的可再生能源中,生物质占最大份额,而在化石燃料中,天然气和煤炭分别在热电联产中占最大份额。美国、俄罗斯和中国分别在可再生能源发电厂中占有最大份额。所有审查的文章都提到了热电联产发电厂对热存储的需求。如果使用热电联产技术进行区域供热和制冷,与单一供热相比,生物质消耗可减少 31.4%,并且这一数量可以更多地用于增值部门。