该原型机用于实验验证 SmartCHP 概念。实验工作的主要发现是,原型机的操作窗口比预期的要小。在当前系统中,由于燃料供应能力和燃烧所需的最低氧含量的限制,锅炉的容量只能在相对较小的范围内变化。重新设计燃料喷射方法以及向烟气锅炉中注入更多空气的选项可以增加这个操作窗口。不过,在项目期间考虑了一些替代的 CHP 解决方案,这些解决方案可以在复杂度较低的系统中以相似或更好的效率提供所需的灵活性。例如,发动机与热泵的组合可以(理论上)将系统的整体效率提高到 100% 以上,并且还有一个好处是,在高热量需求时(冬季),系统不会给电网带来负担。
捕获热能以产生可用的热能,抵消为此目的额外燃料的消耗。这样,分布式发电系统比将电力和热能生产分开的传统发电机实现了更高的能源效率(Kerr,2008 年)。可再生技术的使用和热电联产的效率提升可显著减少排放,从而推动世界减少全球污染和实现气候变化目标的举措。此外,研究表明,分布式发电系统可节省能源,在减少输配电容量投资方面发挥重要作用(El-Khattam 和 Salama,2004 年;Gumerman 等人,2003 年)。其好处还包括调峰,以及提高系统可靠性和弹性(Chiradeja 和 Ramakumar,2004 年)。我们的研究为热电联产可再生技术的最佳设计(即规模和组合)和调度提供了信息,以降低代表性商业建筑的成本。
A9) 诺福克海军造船厂有一个广泛的社区外展计划。由于 COVID-19,2020 年诺福克海军造船厂的社区外展计划并不正常。在过去的几年里,我们与朴茨茅斯公立学校建立了牢固的合作伙伴关系,我们的员工为朴茨茅斯公立学校的学生提供指导和阅读。我们全年参加了许多 STEM 活动,并在 Dry Dock Club 为朴茨茅斯公立学校 5 年级学生举办了一场 STEM 活动。诺福克海军造船厂还支持夏令营,例如朴茨茅斯的 Starbase Victory 和弗吉尼亚海滩、诺福克和纽波特纽斯的其他三个夏令营,帮助了 5,000 多名 STEM 领域的学生。诺福克海军造船厂指挥官与各种社区团体和 NNSY 阿拉巴马州进行了交谈
翼型内部 Ra Ra 冷却设计 喷漆后状态(微米) (微米) 基线叶片 翼展方向 5.0 + 0.6 1.4 + 0.3 弦向 5.7 + 1.7 1.5 + 0.4 基线叶片 翼展方向 3.6 + 0.8 0.8 + 0.15 弦向 3.8 + 0.6 1.0 + 0.2 NETL 双壁 翼展方向 1.1 + 0.2 1.0 + 0.3 弦向 1.1 + 0.15 0.7 + 0.3 平均值 + 2 个标准差
当我们知道,随着热量释放到大气中,超过70%的热力产生浪费了55%的能量输入,仍有巨大的未开发潜力,可以有效地向消费者提供能源(电力和热量)。额外的能量被浪费了,因为中央生产的电力在长距离内传输并分配给最终用户。cogogeneration确保将超过75%的原能转化为有用的功率和热量,然后在本地产生,然后在现场或附近消耗,从而最大程度地减少了转换,传输和分布损失。然而,当前的热电联产仅占欧盟热电产的27%。
摘要:本研究是对作者最近发表的一篇论文的扩展。特别是,本文重点介绍了为住宅应用开发的多联产系统添加电力存储。与以前的工作不同,它旨在设计一个离网设施。多联产厂为西班牙阿尔梅里亚的单户住宅提供电力、空间供暖和制冷、生活热水和淡水。主要的系统技术是光伏/热能收集器、反渗透和干燥剂空调。添加了铅酸电池存储作为电气系统的备用。该系统在 TRNSYS 模拟环境中运行了一年,时间步长为 5 分钟。进行了参数研究,以调查根据安装的电池数量对电网的依赖性。还进行了设计优化,以提供离网情况下的最佳系统配置。太阳能集热器效率为 0.55,干燥剂空调性能系数为 0.42。所有需求都得到了充分满足,一次能源节约和二氧化碳减排量达到100%。全年几个小时内电池充电状态最低达到30%。
圣保罗热电联产公司 (SPC) 是圣保罗地区能源公司的子公司,其成立旨在满足该地区树木废料处理的需求并履行生物质授权。SPC 的成立得到了超过六千万美元的私人投资。购买 SPC 设施的能源和容量有助于 Xcel 能源公司履行生物质授权规定的剩余义务。生物质授权起源于 1994 年 Prairie Island 立法,该立法允许 Xcel 能源公司安装额外的地上核废料储存容量(也称为储存桶),以使核设施能够继续运行。明尼苏达州法规第 116C.773 条要求州政府和 Xcel 能源公司签署协议,约束双方履行明尼苏达州法规第 116C.711、772 和 216B.2424 条规定的义务,并将 Prairie Island 的 Mdewakanton Dakota 部落委员会指定为预期第三方受益人。
固体氧化物燃料电池 (SOFC) 的独特特性促使其被广泛用于各种应用,从便携式、移动式和微型热电联产(500 W 至 20 kW)到分布式发电(B 100 kW –5 MW)和中央公用事业规模(4 100 MW)的更大规模固定电源。SOFC 技术具有吸引力,包括高电效率、高品位废热、燃料灵活性、低排放、功率可扩展性以及在实现高产量时具有低单位资本成本潜力。SOFC 的高工作温度使其能够产生不同等级的废热,然后可以回收用于工艺加热、通过燃气轮机集成增加功率或用于可出口产品的多联产(例如,热能、冷却、功率或燃料)。废热的有效利用对整个系统的效率、经济性和环境排放有重大影响。这些特性加速了 SOFC 技术的发展,旨在取代传统的基于燃烧的发电
摘要:为对称提升冷热电联产微电网的经济性和环保性,分析了传统冷热电联产系统中储能设备配置方式的特点,设计了运营商建立储能站的方案,提出了一种改进的aquila优化器对系统进行优化配置,对称提升了经济性和环保性。通过在3个不同地点的试验验证了所提方案的可行性。结果表明,基于对称性理念,与单独采用储能设备的系统和不采用储能设备的系统相比,带有储能站的系统经济成本和废气排放量均有不同程度的降低。特别是在地点1,系统中带有储能站的方案与其他方案相比,可分别减少从电网购买的电能43.29%和61.09%。该研究通过对称考虑系统的经济性和环境性能,有利于促进清洁能源的发展,缓解能源危机,减少电网供电压力,提高运营商的利润。
摘要:燃料电池电动汽车 (FCEV) 可在空闲时间使用,以分散的方式将氢转化为电能,从而确保完全可再生能源供应。除了电力之外,燃料电池堆中还会产生废热,这些废热也可以利用。本文研究了如何通过 FCEV 满足德国社区的能源需求,并确定了潜在的技术问题。为此,在开放能源系统建模框架 (oemof) 中模拟了能源场景。优化模拟找到了在考虑的 10 天期间最有利的解决方案。高达 49% 的供暖和热水热需求可直接由 FCEV 的废热满足。随着需要充电的电池电动汽车 (BEV) 数量的增加,这一份额也在增加。252 名居民中的 5 名必须永久提供 FCEV 来为社区供电。所需的氢气量被视为一个问题。如果不能以固定的方式为车辆供应氢气,则需要比能源需求性能要求高出15倍的车辆。