信息仅供参考。此处的信息被认为是可靠的,但不对其准确性、特定应用的适用性或使用后获得的结果做出任何形式的陈述、保证或担保。Lubrizol Advanced Materials, Inc.(“Lubrizol”)无法保证与此信息相关的任何产品与其他物质结合或在您作为“用户”的工艺中的表现。通常,这些信息基于使用小型设备的实验室工作。由于商业上用于加工材料的方法、条件和设备各不相同,这些信息并不一定表明最终产品的性能或配方的可重复性或安全性。因此,对于下文引用的信息或产品是否适用于向 Lubrizol 披露的任何应用,不做任何担保或保证。全面测试和最终产品性能由用户负责。此外,任何提供的配方仅应作为建议的起点使用。对于使用或处理任何超出路博润直接控制范围的材料,路博润不承担任何责任,用户应承担所有风险和责任。卖方不做任何明示或暗示的保证,包括但不限于适销性或特定用途适用性的暗示保证。本文中包含的任何内容均不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。
聚合物数量和种类的壮观生长,具有具有广泛的物理特性和应用的材料。能够识别和表征这些材料不仅具有学术利益,而且具有商业和环境关注。聚生物的许多重要结构和微观结构特征在其他类别的材料中没有对应物。例如,分子质量对金属或陶瓷几乎没有显着性,而对聚合物的性质产生了重大影响。此外,当将其应用于聚合物时,可能需要对表征方法进行重大修改。一个例子是传输电子显微镜,其中聚体的电子光束敏感性已经需要开发金属和陶瓷不需要的程序。本书集中于聚合物特有的那些技术,以及在聚合物研究中具有特定价值的那些方面。近年来,人们对表面表征的兴趣越来越大,这可能会对这些材料的物理特性和技术应用产生重大影响。
发现,基于生物的α-甲基二氨基二甲酰基酮和α-亚甲基γ-谷氨酸甲酰胺(膜)(膜)具有与化石基甲基甲基甲酸酯(丙烯酸酯)单体相似的化学结构,能够与化石基于化石基于化石的均值相似甚至具有优质性能。单体反应性的差异会影响共聚物的结构,这反过来影响聚合物特性,例如热行为(玻璃过渡温度)。通过自由基悬架聚合将膜掺入在可热膨胀微球的聚合物壳中后,对这些特性进行了评估。用基于生物的膜代替基于化石的甲基甲基丙烯酸甲酯(MMA)导致部分基于生物的可热膨胀微球(TEMS),从而发现随着膨胀温度的升高,膨胀性能受到影响。甚至有可能与完全基于化石的聚合物壳的TEMS相比,具有完全生物的聚合物壳的TEMS,其膨胀温度窗口要高得多。
特瑞堡密封系统提供定制热塑性材料、复合材料和几何形状,以满足特定应用需求。例如,具有增强的耐腐蚀性和耐火性的产品或能够长时间承受具有挑战性或特殊条件的专用复合材料。我们的创新制造工艺允许更小、更复杂的形状,从而缩小组件尺寸或将多种功能组合成一个产品。
2.1 树脂 ................................................................................................ 11 2.1.1 树脂类型 .............................................................................. 11 2.1.2 树脂重量含量 ..............................................................15 2.1.3 树脂对 PC 性能的影响 ..............................................16 2.2 骨料 ...................................................................................... 16 2.2.1 骨料类型 ...................................................................... 16 2.2.2 骨料尺寸 ......................................................................21 2.2.3 骨料形状 ......................................................................21 2.2.4 骨料重量含量 ................................................................22 2.2.5 骨料对聚合物混凝土性能的影响 .............................................................................22 2.3 微填料 ......................................................................................24 2.3.1 微填料类型 ................................................................24 2.3.2 微填料尺寸 .............................................................................29 2.3.3 微填料重量含量......................................30 2.3.4 微填料对聚合物混凝土性能的影响 ......................................................................31 2.4 纤维 ................................................................................................32 2.4.1 纤维类型 ................................................................................32 2.4.2 纤维长度 ................................................................................36 2.4.3 纤维重量含量 ......................................................................36 2.4.4 纤维对聚合物混凝土性能的影响 .............................................37 2.5 纳米填料 .............................................................................................39 2.5.1 纳米材料类型 .............................................................................39 2.5.2 纳米材料重量含量 .............................................................47 2.5.3 纳米复合材料的制备方法 .............................................48 2.5.4 纳米填料对 PC 性能的影响 .............................................48 参考文献 .............................................................................................................56
信息仅供参考。此处的信息被认为是可靠的,但对其准确性、特定应用的适用性或使用后获得的结果不作任何形式的陈述、保证或担保。路博润先进材料公司 (Lubrizol Advanced Materials, Inc.)(“路博润”)无法保证与此信息相关的任何产品与其他物质结合或在您作为“用户”的工艺中的表现。通常,这些信息是基于使用小型设备的实验室工作。由于商业上用于处理材料的方法、条件和设备各不相同,这些信息并不一定表明最终产品的性能或配方的可重复性或安全性。因此,对于以下信息或产品是否适用于向路博润披露的任何应用,路博润不作任何保证或担保。全面测试和最终产品性能由用户负责。此外,任何提供的配方都应仅用作建议的起点。对于使用或处理超出路博润直接控制范围的任何材料,路博润不承担任何责任,用户应承担所有风险和义务。卖方不做任何明示或暗示的保证,包括但不限于适销性或特定用途适用性的暗示保证。本文所含内容不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。
热导率(𝜿)控制热量如何在材料中传播,因此是一个关键参数,它约束光电设备的寿命和热电学(TES)的性能。在有机电子中,了解决定的是难以捉摸且具有实验性挑战。在这里,通过在不同的空间方向上测量𝜿 𝜿 𝜿 𝜿 𝜿 𝜿 𝜿,它可以统计地显示微观结构如何解锁两个明显不同的热运输方式。𝜿在远程有序聚合物中遵循标准的热传输理论:改进的排序意味着更高的𝜿和各向异性增加。𝜿随着骨架,较高的分子量和较重的重复单位而增加。在其中,电荷和热传输齐头并进,可以单独通过胶片纹理将其解耦,并由分子动力学模拟支持。,𝜿与持久性长度和重复单元的质量负相关,因此发现了异常的行为,尽管有用,但却是有用的。重要的是,对于准无形共聚合物(例如,IDT-BT)𝜿随着电荷迁移率的增加而减小,与半晶体对应物(在可比较的电力电导率下)相比,降低了10倍。最后,提供了有机半导体中高和低的特定材料设计规则。
迷你电影制造商一个负担得起且紧凑的单元,适用于少量供应量的轻型应用。包括加热的柏拉图,压力机以及将聚合物样品融化为可重复的膜所需的一切,并使用您的Thermo Scientific FTIR光谱仪分析它们。允许对添加剂和其他聚合物特性进行定量分析,包括共聚物中的结晶度和单体比。紧凑型尺寸几乎可以在任何桌面或实验室长凳上使用,并且能够加热高达250°C。胶片可以按至50、100、250和500微米的厚度,并安装在随附的10毫米光圈采样卡中以进行传输分析归档。
图1:聚合物拓扑的变分自动编码器的策略。在训练阶段(顶部),用于计算一组聚合物的分子动力学(MD)模拟来计算一组聚合物的计算典型典型的抄本,例如平均平方循环半径⟨r 2 g⟩。使用人工神经网络(ANN)和图神经网络(GNN),将有关拓扑描述符和聚合物图的信息编码为低维的潜在空间。潜在空间被解码以完成重建,回归和分类任务。这些编码的特征被串联以形成降低的潜在空间,分解器从中重新构造了聚合物结构。在搜索阶段(底部)中,从潜在空间到供应聚合物进行采样,这些聚合物预测将展示目标⟨r 2 g⟩且指定的拓扑。根据MD模拟评估了这些谓词,并在验证后进行了系统分析,可以对拓扑影响如何影响其他特性,例如粘度。