摘要。额环开环的分解聚合(FromP)是一种快速,低能的制造反应,可用于治疗热固性材料。div> dicyclopentadiene(DCPD)导致聚(双环戊二烯)(p(dcpd)),这是一种具有出色机械性能和化学稳定性的坚硬热固性。像大多数热眠者一样,P(DCPD)无法重新处理,因此很难回收。以前的工作表明,将少量可切合单元掺入P(DCPD)网络的链段中,可以使其解构。在这里,我们报告说,在FromP中,在市售的多功能共聚物(DHF)2,3-二氢呋喃(DHF)既可以充当有效的Grubbs催化剂抑制剂,并引入了可裂解的酸性单元。所得材料保留高性能特性,包括115-165°C的玻璃过渡温度和35-40 MPa的弹性模量。在临界载荷水平上方添加DHF可以实现可解构的热固性。我们进一步展示了通过额叶聚合的自由形式的3D打印。
关税修正案符合订单号2222亲爱的秘书Bose:加利福尼亚独立系统运营商公司(“ CAISO”)提交了此关税修正案,以遵守订单号2222,1委员会发行的旨在消除参与RTO/ISOS运营的能力,能源和辅助服务市场的分布式能源资源聚合的障碍(“ DERAS”)。2 CAISO恭敬地要求委员会按照命令号2222。I.简介CAISO,传输所有者和利益相关者多年来一直在努力工作,以确保分布式能源资源(“ DERS”)可以进入CAISO的批发市场。在2016年,CAISO是第一个建立DERA模型的RTO/ISO。但是,即使在此之前,CAISO也能够参与其市场。自2005年以来,超过500个新资源,包括2200兆瓦的新资源与分销网格相互联系,以参与CAISO的批发市场。CAISO关税允许DERS参与其市场,而不管他们最初用于互连的关税或零售计划是什么。3同样,CAISO关税也不
摘要 - 在这项工作中,我们开发了中等的偏差功能,以衡量一组给定间隔值数据之间的相似性和相似性,以构建间隔值的启动函数,并且我们将这些功能应用于两个电动成像脑计算机界面(MI-BCI)系统中,以分类电脑图信号。为此,我们介绍了间隔值中等偏差函数的概念,尤其是我们研究了那些间隔值值的中度偏差函数,这些函数保留了输入间隔的宽度。为了将它们应用于Mi-BCI系统,我们首先使用模糊含义的操作员来测量系统集合中每个分类器的输出链接的不确定性,然后我们使用新的间隔价值汇总的聚合功能执行决策阶段。我们已经在两个MI-BCI框架中测试了我们的建议的好处,比使用其他数值聚合和间隔值的OWA运算符获得的结果更好,并获得了竞争结果,而不是基于非聚合的框架。
摘要 —本文提出了一种用于大规模整合电动汽车 (EV) 和可再生能源的电网的两阶段能源管理系统 (EMS)。第一阶段的经济调度分别确定插电式和电池更换模式下电动汽车充电站和电池更换站 (BSS) 的最优运行点。此阶段提出的随机模型预测控制 (SMPC) 问题通过机会约束优化公式来表征,该公式可以有效地捕捉系统和预测的不确定性。采用分布式算法——交替方向乘子法 (ADMM),通过并行计算加速优化计算。第二阶段旨在协调电动汽车充电机制,使其持续遵循第一阶段的解决方案,即目标运行点,并满足通过高级计量基础设施 (AMI) 捕获的电动汽车客户的充电需求。所提出的解决方案为大规模集中式电网提供了一种整体控制策略,其中聚合的各个参数是可预测的,并且系统动态不会在短时间间隔内发生急剧变化。
摘要 —本文提出了一种用于大规模整合电动汽车 (EV) 和可再生能源的电网的两阶段能源管理系统 (EMS)。第一阶段的经济调度分别确定插电式和电池更换模式下电动汽车充电站和电池更换站 (BSS) 的最优运行点。此阶段提出的随机模型预测控制 (SMPC) 问题通过机会约束优化公式来表征,该公式可以有效地捕捉系统和预测的不确定性。采用分布式算法——交替方向乘子法 (ADMM),通过并行计算加速优化计算。第二阶段旨在协调电动汽车充电机制,使其持续遵循第一阶段的解决方案,即目标运行点,并满足通过高级计量基础设施 (AMI) 捕获的电动汽车客户的充电需求。所提出的解决方案为大规模集中式电网提供了一种整体控制策略,其中聚合的各个参数是可预测的,并且系统动态不会在短时间间隔内发生急剧变化。
本研究回顾了美国加利福尼亚州和纽约州共享(社区)太阳能和社区选择聚合的发展。这两个州都是美国能源转型政策的领导者,但它们在两种能源分散化形式上的发展轨迹不同。共享太阳能在纽约更先进,但社区选择在加利福尼亚州更先进。使用场论框架,对能源分散化轨迹的比较审查表明重组和监管规则的差异如何影响结果。零售竞争规则和公用事业拥有分布式发电资产的权力的差异,加上民间社会的作用和民选官员的关注,决定了冲突的强度和结果。它们还有助于这两个州不同类型的社区选择的发展。除了展示与不同类型的重组市场相关的制度条件如何影响分散能源的机会之外,该研究还研究了参与者为获得支持和合法化其政策偏好所做的努力如何涉及广泛的社会价值观。
研究时间的缓解。此外,通常还使用“一次一个变量”(OVAT)方法进行优化 - 这可能导致识别false Optima。7使用实验的统计设计(DOE)方法对OVAT的更简单,更合适的替代方案之一是对反应空间的结构化研究 - 从而使用一组多元体验筛选了条件。8例如,Abetz和Comers已经说明了用于筏聚合的有效优化工作流程,9他们从DOE屏幕上展示了准确的预测和靶向聚合物性能。使用更具动态的,基于机器学习的方法是通过进一步减少用户输入的机会进行优化的机会;实际上,所谓的黑盒算法不需要任何先验知识,例如Nelder - Nelder - Mead Simplex 11,12和分支和拟合(SnobFit)13,14算法的稳定嘈杂的优化,可以实现单个客观优化 - 即找到目标15或纯度等物镜的最理想的结果。16
最近,由于其生物相容性和生物降解性,PLA(聚乳酸)及其用于生物医学应用的衍生物已越来越引起人们的注意。乳酸作为PLA的单体是由微生物,动物和植物产生的。用于生产PLA,分别采用了两种涉及直接多浓度和乳酸和乳酸的环式聚合的主要方法。这种聚合物与其他合成和天然聚合物结合使用,在药物输送系统中表现出了有希望的结果,特别是抗癌药物载体和组织工程,例如皮肤再生,骨骼再生和支架。此外,PLA的纳米制剂为克服传统抗癌药物和散装材料的缺点开辟了新的途径。此外,这种生物塑料的环保特征使其成为从包装到一次性餐具的各种应用程序的传统塑料的理想选择。在这方面,这种迷你审查涵盖了与该热塑性聚酯在抗癌药物递送和组织工程中的新应用相关的最新进展和挑战。
DNase测试琼脂用于检测细菌和真菌的脱氧核糖核酸酶活性,尤其是用于鉴定致病性葡萄球菌(1)。dnase生产生物在绿色背景周围的生长周围表现出清晰的区域。不需要试剂添加(2)。该媒介基于根据Smith,Hanoch和Rhoden(3)和Jefferies,Holtman and Guse(4)的修改,用于检测史密斯,Hanoch和Rhoden(3)的过程的方法。培养基支持革兰氏阳性和革兰氏阴性细菌的生长。色氨酸是生物体的氮源。dNase将DNA底物解散在培养基中。甲基绿色褪色成无色的化合物,在原本绿色的培养基中产生周围菌落(或带/斑点接种物)周围不同的透明区域。甲基绿色需要高度聚合的DNA底物(5),并与聚合DNA结合,形成pH 7.5(6,7,8)的稳定的绿色复合物。随着水解的进展,甲基绿色被释放,并且在此pH下不混合时,它会逐渐消失并成为无色化合物。因此,观察到透明区域(7,9)。
在这项研究中,使用胶原蛋白和氧化石墨烯(RGO)合成创新的导电杂种生物材料,以用作伤口敷料。用甘油塑料胶原蛋白凝胶(COL),并用辣根过氧化物酶(HRP)交联。FTIR,XRD和XPS证明了组件之间的成功相互作用。证明,增加RGO浓度会导致更高的电导率和负电荷密度值。RGO还提高了通过降低生物降解速率表达的水凝胶的稳定性。此外,通过酶促交联和多巴胺聚合的聚合也增强了水凝胶的稳定性,对I型I型胶原酶的酶促作用也得到了增强。然而,它们的吸收能力达到215 g/g,表明水凝胶具有吸收液体的高电位。这些特性的上升对伤口闭合过程产生了积极影响,在48小时后达到了84.5%的体外闭合率。这些发现清楚地表明,对于伤口愈合目的,这些原始的复合生物材料可能是可行的选择。