基于聚类的置换检验广泛用于神经科学研究中,用于分析高维脑电图 (EEG) 和事件相关电位 (ERP) 数据,因为它可以解决多重比较问题而不会降低统计功效。然而,经典的基于聚类的置换分析依赖于参数 t 检验,如果数据分布不正态,则可能无法验证其假设,因此可能需要考虑其他选择。为了克服这一限制,我们在此介绍了一种基于非参数 Wilcoxon-Mann-Whitney 检验的 EEG 序列聚类置换分析新软件。我们在两个独立的 ERP 和 EEG 频谱数据集中测试了 t 检验和非参数 Wilcoxon 实现:虽然基于 t 检验和基于非参数 Wilcoxon 的聚类分析在 ERP 数据的情况下显示出相似的结果,但 t 检验实现无法在频谱数据的情况下发现聚类效应。我们鼓励使用非参数统计数据对 EEG 数据进行聚类置换分析,并且我们为此计算提供了一个公开可用的软件。© 2022 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
过去 30 年来,疫苗犹豫行为现象愈演愈烈,危及群体免疫的维持。这种行为往往在空间上聚集,形成一些未受保护的亚群体,这些亚群体可能成为疫情爆发的热点。目前尚不清楚的是导致疫苗接种行为空间聚集的社会机制,尤其是在景观尺度上。我们关注空间聚集的存在,旨在从机制上理解不同的社会过程如何引起这种现象。具体来说,我们提出了两个假设来解释空间聚集的存在:(i) 社会选择,即对疫苗犹豫的个体具有相同的社会人口统计特征,这些特征的聚集会在疫苗犹豫中产生空间聚集;(ii) 社会影响,即犹豫行为具有传染性,会在邻近社会传播,从而形成犹豫聚集。采用理论空间网络方法,我们探讨了这两个过程在一系列空间结构下在疫苗接种行为中生成空间聚类模式的作用。我们发现这两个过程都能够独立地产生空间聚类,并且社会动态的空间结构越复杂,其实现的疫苗犹豫行为的空间聚类就越高。总之,我们证明了这些过程导致了犹豫簇的独特空间配置,并且我们用关于美国疫苗犹豫、社会决定因素和社会连通性的细粒度经验数据验证了这两个过程的模型。最后,我们提出并评估了两种减少犹豫行为的新型干预策略的有效性。我们的生成建模方法以独特的经验数据为基础,为复杂的社会过程在驱动疫苗犹豫的空间异质性方面的作用提供了见解。
摘要。在3D数据上解决人体部位的一种常见方法涉及使用2D分割网络和3D投影。遵循这种方法,可以在最终的3D分割输出中引入几个错误,例如分割错误和再投影错误。当考虑了非常小的身体部位(例如手)时,此类错误甚至更为重要。在本文中,我们提出了一种新算法,旨在减少此类错误并改善人体部位的3D序列。该算法使用DBSCAN算法检测噪声点和错误的簇,并更改利用簇的形状和位置的点的标签。我们评估了3DPEOPLE合成数据集和真实数据集上提出的算法,突出了它如何可以大大改善小身体(如手)的3D分割。使用我们的算法,我们在合成数据集上实现了多达4.68%的IOU,在实际情况下最多可占IOU的2.30%。
用于检测神经退行性疾病(例如阿尔茨海默病或额颞叶变性)中无症状脑部变化的传统方法通常是在预定义的粒度级别上评估体积变化,例如逐体素或先验定义的感兴趣皮质体积。在这里,我们应用一种基于层次谱聚类的方法,这是一种基于图的分区技术。我们的方法使用多级分割,在标准统计框架内以数据驱动、无偏见、全面的方式检测变化。此外,谱聚类可以检测形状变化和大小变化。我们使用层次谱聚类进行了基于张量的形态测量,以检测遗传性额颞叶痴呆症倡议无症状和有症状的额颞叶变性突变携带者的变化,并将结果与更传统的基于体素张量和体素的形态测量分析的结果进行了比较。在有症状组中,基于层次谱聚类的方法产生的结果与基于体素的方法获得的结果大致一致。在无症状的 C9orf72 扩增携带者中,谱聚类检测到了内侧颞叶皮质的大小变化,而基于体素的方法只能在症状期检测到。此外,在无症状和有症状期,谱聚类方法检测到了 C9orf72 的运动前皮质形状的变化。总之,本研究显示了层次谱聚类在数据驱动的分割和检测单基因额颞叶变性的有症状和无症状阶段的结构变化方面的优点。
基因序列聚类在计算生物学和生物信息学中非常重要且重要,用于研究系统发育关系和基因功能预测等。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。 基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。 例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。 已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。 需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。算法。本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。此外,我们开发了一个多节点版本来处理大型数据集。该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。强可伸缩性测试表明,NGIA的多节点版本可以以31%的并行效率扩展32个线程。©2022 Elsevier B.V.保留所有权利。
摘要:脑组织分割是使用多模态磁共振成像 (MR) 进行脑部疾病临床诊断的重要组成部分。文献中已通过许多无监督方法开发了脑组织分割。最常用的无监督方法是 K 均值、期望最大化和模糊聚类。与上述方法相比,模糊聚类方法具有相当大的优势,因为它们能够处理复杂、不确定性很大且不精确的脑图像。然而,这种方法存在数据采集过程中固有的噪声和强度不均匀性 (IIH)。为了解决这些问题,我们提出了一种模糊共识聚类算法,该算法定义了一个由投票方案产生的成员函数来对像素进行聚类。具体来说,我们首先预处理 MRI 数据,并采用基于传统模糊集和直觉集的几种分割技术。然后,我们采用投票方案来融合应用的聚类方法的结果。最后,为了评估所提出的方法,我们在两个公开可用的数据集(OASIS 和 IBSR18)上使用了众所周知的性能指标(边界测量、重叠测量和体积测量)。实验结果表明,与最近的最新技术相比,所提出的方法具有更优越的性能。所提出方法的性能还使用现实世界的自闭症谱系障碍检测问题进行了展示,与其他现有方法相比,其准确率更高。
1 纳季兰大学医学院内科放射学系,纳季兰 61441,沙特阿拉伯;yealmalki@nu.edu.sa 2 世宗大学无人驾驶车辆工程系,首尔 05006,韩国;umair@sejong.ac.kr 3 Secret Minds,创业组织,伊斯兰堡 44000,巴基斯坦;engnr.waqasahmed@gmail.com 4 国立科技大学(NUST)机械与制造工程学院(SMME)机器人与智能机械工程系(RIME),H-12,伊斯兰堡 44000,巴基斯坦; karamdad.kallu@smme.nust.edu.pk 5 伊巴达特国际大学电气工程系,伊斯兰堡 54590,巴基斯坦 6 卡西姆大学医学院放射学系,沙特阿拉伯布赖代 52571;salduraibi@qu.edu.sa(SKA);al.alderaibi@qu.edu.sa(AKA) 7 纳季兰大学工程学院电气工程系,沙特阿拉伯纳季兰 61441;miditta@nu.edu.sa 8 扎加齐格大学人类医学学院放射学系,埃及扎加齐格 44631;maatya@zu.edu.eg 9 纳季兰大学应用医学科学学院放射科学系,沙特阿拉伯纳季兰 61441; hamalshamrani@nu.edu.sa * 通信地址:amad.zafar@iiui.edu.pk † 这些作者作为第一作者对这项工作做出了同等贡献。
摘要:人类的情绪随时间而变化,非平稳,性质复杂,是日常生活中人类反应的结果。从一维脑电信号中连续检测人类情绪是一项艰巨的任务。本文提出了一种使用连续小波变换从脑电信号中检测情绪的先进信号处理机制。原始脑电信号的空间和时间分量被转换成二维频谱图,然后进行特征提取。实施混合时空深度神经网络以提取丰富的特征。基于差分的熵特征选择技术根据熵、低信息区域和高信息区域自适应区分特征。使用深度特征包 (BoDF) 创建相似特征的聚类并计算特征词汇以降低特征维数。在 SEED 数据集上进行了广泛的实验,结果表明与最先进的方法相比,所提出的方法具有重要意义。具体来说,所提出的模型在 SJTU SEED 数据集上分别对 SVM、集成、树和 KNN 分类器实现了 96.7%、96.2%、95.8% 和 95.3% 的准确率。
摘要Athlos队列由与健康和衰老有关的几个协调数据集组成。结果,健康的衰老指数是基于16个单个螺柱的一系列变量来构建的。在本文中,我们考虑了ATHLOS中发现的其他变量,并研究了它们用于预测健康衰老指数的利用。为此目的,在数据集的数量和多样性的驱动下,我们将注意力集中在数据聚类上,在该数据集群上,无监督的学习被用来增强预测能力。因此,我们显示了利用隐藏数据结构的预测实用性。此外,我们证明,在使用适当的分层聚类(在集合分类方案的聚类中),同时保留预测益处时,可以超越施加的计算瓶颈。我们提出了一种根据基线方法和原始概念进行评估的完整方法。结果非常令人鼓舞,暗示了这种指导中的进一步发展以及在具有相似特征的任务中的应用。还提供了R项目的直接开源实现(https://github。com/petros-barmp as/hcep)。关键字:聚类,预测增强,Athlos队列,集合方法