基于聚类的置换检验广泛用于神经科学研究中,用于分析高维脑电图 (EEG) 和事件相关电位 (ERP) 数据,因为它可以解决多重比较问题而不会降低统计功效。然而,经典的基于聚类的置换分析依赖于参数 t 检验,如果数据分布不正态,则可能无法验证其假设,因此可能需要考虑其他选择。为了克服这一限制,我们在此介绍了一种基于非参数 Wilcoxon-Mann-Whitney 检验的 EEG 序列聚类置换分析新软件。我们在两个独立的 ERP 和 EEG 频谱数据集中测试了 t 检验和非参数 Wilcoxon 实现:虽然基于 t 检验和基于非参数 Wilcoxon 的聚类分析在 ERP 数据的情况下显示出相似的结果,但 t 检验实现无法在频谱数据的情况下发现聚类效应。我们鼓励使用非参数统计数据对 EEG 数据进行聚类置换分析,并且我们为此计算提供了一个公开可用的软件。© 2022 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。