摘要 幽门螺杆菌是大多数胃溃疡的病因,也是一些消化系统癌症的病因。幽门螺杆菌抗生素耐药菌株的出现和传播是治疗其感染的最重要挑战之一。本研究旨在开发一种基于刀豆球蛋白 A (ConA) 包覆的壳聚糖 (CS) 纳米载体的药物递送系统,用于将肽靶向释放到幽门螺杆菌感染部位。因此,以壳聚糖为包封剂,采用离子凝胶化法递送 CM11 肽。Con-A 用于涂覆 CS 纳米粒子以靶向幽门螺杆菌。通过 FTIR、动态光散射 (DLS) 和扫描电子显微镜 (SEM) 表征了 CS NPs 和 ConA-CS NPs。体外分析了 CM11 负载的 ConA-CS NPs 对幽门螺杆菌 SS1 菌株的 MIC。为了评估体内治疗效果,在小鼠中建立了H. pylori SS1菌株的胃部感染模型,并进行了组织病理学研究和IL-1β细胞因子测定。根据结果,CS NPs和ConA-CS NPs的尺寸频率分别约为200和350 nm。制备的CM11负载ConA-CS NPs对浓度为32 µg/ml的H. pylori SS1菌株表现出抗菌活性。在合成的CM11负载ConA-CS NPs治疗中观察到最高的愈合过程,并且观察到IL-1β显着降低。我们的研究结果突出了壳聚糖纳米粒子作为药物递送载体在治疗H. pylori SS1菌株胃部感染模型中的潜力。
2型糖尿病(T2DM)是扩大的全球健康问题之一,是最常见的代谢性疾病,其特征是高血糖,这显着有助于产生活性氧(ROS)。文献中已经提到了400多种具有降血糖活性的植物。Clitoria ternatea(C。ternatea)通常称为蝴蝶豌豆或亚洲鸽子,是Fabaceae家族的植物种类成员。这项研究的主要目的是评估链霉菌素(STZ)产生的正常和糖尿病2中的甲状腺梭菌(CT-MX)和/或壳聚糖负载的纳米颗粒(CHNPS)抗透明血糖和抗氧化作用的甲醇提取物。总共将20个雄性白化大鼠分为4组,对照非糖尿病(NC),STZ/糖尿病控制,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNPS组。28天后,评估了评估评估胰岛素水平,空腹血糖(FBG),天冬氨酸转氨酸酶(AST),丙氨酸转氨酶(ALT),超氧化物歧化酶(SOD),谷胱甘肽(GSH),脂质过氧化物过氧化物和mRNA基因的表达。对胰腺组织进行了组织病理学和免疫组织化学研究。在STZ/糖尿病(GP2)大鼠中,FBG,AST,ALT以及CDKN1A和TP53基因表达的水平显着增加。此外,高血糖诱导的肝氧化态可以通过SOD和GSH水平的脂质过氧化和恶化的显着增加来证明。纳米载体剂在抗氧化后显示出极好的抗血糖和作用,使其成为糖尿病患者的有前途的技术。相反,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNP都显示出与糖尿病相关并发症的明显改善。但是,STZ/糖尿病 + CT -CHNP(GP4)大鼠显着抑制了产生的氧化应激和改善的抗氧化活性,肝功能和胰岛素分泌。此外,与GP2相比,它们的胰腺截面具有正常分布和β细胞数量的正常再生胰腺内分泌胰岛,与GP2相比,具有正常分布和β细胞的数量,并抑制炎症和凋亡基因表达的建筑。
CFB,补体因子 B;CFD,补体因子 D;MAC,膜攻击复合物;MASP-3,甘露聚糖结合凝集素相关丝氨酸蛋白酶-3;PNH,阵发性睡眠性血红蛋白尿;RBC,红细胞。1. Risitano AM 等人。Front Immunol。2019;10:1157。2. Notaro R 等人。N Engl J Med。2022;387:160-6。3. Risitano AM 等人。Immunol Rev。2023;313:262-78。4. Loschi M 等人。Am J Hematol。2016;91:366-70。5. Fattizzo B 等人。J Blood Med。2022;13:327-35。 6. Belcher JD 等人。翻译研究。2022;249:1-12。
抽象恶性肿瘤是由癌细胞和肿瘤微环境细胞组成的复杂结构。在这种复杂的结构中,细胞交叉和相互作用,从而共同促进癌症的发展和转移。最近,基于免疫调节分子的癌症免疫疗法极大地提高了固体癌症的治疗功效,从而使某些患者能够实现持续的反应或治愈。然而,由于药物抗性和低反应率,针对可用靶标的PD-1/PD-L1或CTLA-4的免疫疗法的益处有限。尽管已经提出了联合疗法来提高反应率,但仍观察到严重的不良反应。因此,必须确定替代免疫检查点。Siglecs是近年来发现的免疫调节受体(称为Glyco-免疫检查点)的家族。本综述系统地描述了SigLecs的分子特征,并讨论了包括合成配体,单克隆抗体抑制剂和嵌合抗原受体T(CAR CAR-T)细胞在内的地区的最新进展,重点侧重于阻止siALLAID GLYCANSED GLYCAN CAMLAID GLYCAN-GLYCAN-SIGLEC轴的可用策略。靶向Glyco-Mmune检查点可以扩大免疫检查点的范围,并为新药物开发提供多种选择。关键字siglec;脱糖的聚糖; Glyco-immune检查点;高亲和力siglec-rigands;抗Siglec抗体
抽象背景胰腺癌(PC)是一个充满挑战的诊断,尚未受益于免疫肿瘤治疗的进步。不可逆的电穿孔(IRE)是一种非热消融的方法,用于治疗精选的局部可切除的不可切除的PC的患者,并增强了某些免疫疗法的作用。酵母衍生的颗粒β-葡聚糖会诱导训练有素的先天免疫,并成功减轻了鼠PC肿瘤负担。这项研究检验了以下假设:IRE可以增强β -Glucan在PC治疗中诱导训练的免疫力。方法β-葡萄糖训练的胰髓样细胞在暴露于消融和未灭绝的肿瘤调节培养基后的训练有素的反应和抗肿瘤功能。β -Glucan和IRE组合疗法在野生型和抹布 - / - 小鼠的原位鼠PC模型中测试。肿瘤免疫表型。与IRE结合使用以治疗PC。通过质量细胞仪评估IRE后PC服用口服β-葡聚糖患者的外周血。结果开发的肿瘤细胞引起了受过训练的训练反应,并增加了抗肿瘤功能。在体内,β-葡聚糖与IRE结合减少的局部和远处肿瘤负担延长了鼠的原位PC模型。这种组合增强了对PC肿瘤微环境的免疫细胞浸润,并增强了肿瘤浸润的髓样细胞的训练反应。这种双重疗法的抗肿瘤作用与适应性免疫反应无关。此外,口服的β-葡聚糖被确定为诱导鼠胰腺中训练有素的免疫力的替代途径,并与IRE结合使用了PC的长期生存。β -Glucan在体外治疗中还诱导了从接受治疗的PC患者获得的外周血单核细胞中受过训练的免疫力。最后,发现口服的β-葡聚糖会显着改变五名患有III期III期患者的外周血中的先天细胞景观。结论这些数据突出显示了在
概述了几丁质和壳聚糖生物聚合物在经济和环境可持续发展的开发杆上的潜力(尤其是在发展中国家)的潜力。已经考虑并简要概述了它们的以下优势:(i)几丁质的自然来源在整个星球上具有广泛的分布,通常可以作为廉价的废物供应; (ii)这些材料的多功能性,以及在农业,水处理,食品工业,环境,石油,医疗保健,能源,技术等的各种领域中的应用,进行了一些试验甚至行外的试验; (iii)这些材料的生产和使用可以促进某些国家的内生能力的进步,以创建自己的技术,并在敏感部门(即卫生服务,食品,水处理等)中基本和高级生成产品和应用,除了促进将学术领域与其他部门与其他行业融合在一起之外。
在自然免疫学上发表的最新论文中,Ding等。提供了有关训练有素的先天免疫如何消除癌症的机制的新见解。作者表明,酵母衍生的整个β-葡聚糖颗粒(WGP)提高了肺间质性巨噬细胞对肿瘤来源因子的反应性,与随后通过增强的细胞毒性对癌细胞抑制肿瘤转移相关的肿瘤转移。作者确定了由WGP训练的巨噬细胞中的代谢鞘脂 - 线粒体纤维轴是负责这种现象的关键途径,并将其归类为受过训练的先天免疫力的机制[1]。传统上,先天和适应性免疫系统通过其特殊的养育和记忆能力而区分。长期以来,人们一直认为免疫记忆是适应性免疫反应的独家标志。另一方面,先天免疫细胞没有被视为可以保留记忆表型的细胞。近年来,这种范式发生了变化:新兴的证据表明,某些微生物刺激和内源性配体会诱导先天免疫细胞功能持久的变化,从而在继发性刺激时会增加其反应性。此过程被称为“训练有素的先天免疫”或“受过训练的免疫力” [2]。在与受过训练的免疫刺激的第一次接触后,易感细胞会经历代谢,表观遗传和/或转纹理重编程,从而提高对继发性侮辱的反应性[3,4]。训练有素的先天免疫主要在单核细胞和巨噬细胞中进行了描述[3],后来在粒细胞中[5]。这些先天的免疫细胞具有识别和应对广泛刺激曲目的能力;然而,大多数对训练有素的先天免疫力的研究都集中在巴奇氏菌(BCG)疫苗(BCG)疫苗,牛肉分枝杆菌的弱版和真菌β-来自念珠菌,Trametes versicolor或saccharomyces cerevisiae的真菌β-葡萄糖。在治疗感染性和炎症性疾病的治疗方面已经探讨了训练有素的先天免疫力,而促使训练有素的免疫作为癌症的治疗策略,直到最近才出现。例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。 尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制例如,BCG疫苗接种对膀胱癌,黑色素瘤,淋巴瘤和白血病有抗肿瘤作用。尽管β-葡聚糖也据报道会诱导抗肿瘤对原发性肿瘤的抗肿瘤作用[5-7],但训练有素的先天性免疫细胞引起抗肿瘤反应的确切机制
摘要:Gc蛋白中的O连接α-N-乙酰半乳糖胺(α-GalNAc)对巨噬细胞活化至关重要,因此Gc蛋白的GalNAc连接形式称为Gc巨噬细胞活化因子(GcMAF)。人血浆Gc蛋白中的O连接聚糖主要由三糖组成。Gc蛋白上的聚糖被α-Sia酶和β-Gal酶水解,剩下α-GalNAc,即产生GcMAF。GcMAF上存在的α-GalNAc水解后,该蛋白失去巨噬细胞活化作用。相反,我们合成的吡咯烷型亚氨基环多醇具有很强的体外α-GalNAc酶抑制活性。在本研究中,我们研究了亚氨基环多醇通过抑制α-GalNAc酶活性对GcMAF的保护作用。详细的质谱分析揭示了抑制剂对GcMAF的保护作用。此外,使用胰蛋白酶消化后的糖基化肽的串联质谱(MS/MS)分析获得了有关糖基化位点和聚糖结构的结构信息。