人类胃肠道(肠道)微生物组在维持宿主健康中起着至关重要的作用,并且越来越被认为是精确医学的重要因素。高通量测序技术已彻底改变了 - 组数据的生成,促进了人类肠道微生物组的表征,并具有出色的分辨率。通过揭示有关功能基因,微生物组成,聚糖和代谢产物的信息,对各种 - 组数据的分析,包括荟萃分析,元基因组学,糖基因组和代谢组学。这种多词方法不仅为肠道微生物组在各种疾病中的作用提供了见解,而且还促进了微生物生物标志物用于诊断,预后和治疗的鉴定。机器学习算法已成为从复杂数据集中提取有意义的见解的强大工具,并且最近通过有效地识别微生物特征,预测疾病状态并确定潜在的治疗靶标,将其应用于宏基因组学数据。尽管有这些快速的进步,但仍然存在一些挑战,例如关键知识差距,算法选择和生物信息学软件参数化。在这个迷你审查中,我们的主要重点是宏基因组学,同时认识到其他 - 词素可以增强我们对生物功能多样性及其与宿主的相互作用的理解。我们旨在探索当前的多词,精密医学和机器学习的交集,以促进我们对肠道微生物组的理解。一种多学科的方法有望在精确医学时代改善患者的结果,因为我们揭示了微生物组与人类健康之间的复杂相互作用。
abtract,应力与胃肠道(GI)疾病之间的关联已经很好地确定,而确切的机制仍然难以捉摸。因此,迫切需要建立小鼠模型来研究约束应力相关的GI泄漏,但是当前模型有其局限性。最近已经开发了一种新的埃文斯蓝色约束小鼠模型,该模型使研究人员能够研究活动物中的约束压力相关的GI泄漏。本评论文章将重点介绍该模型,包括其机制,临床意义以及研究约束压力相关的GI损伤的应用。使用该模型的研究的最新发现也将得到强调,以及它们的诊断和治疗潜力。本文旨在讨论当前的研究,并为进一步研究提供建议,最终提高我们对压力与胃肠道损伤之间的联系并改善患者结果的理解。
背景 • CF33 是一种新型嵌合溶瘤痘病毒,编码人类钠碘转运体 (hNIS) 转基因。转基因插入 J2R 基因座的病毒胸苷激酶基因位置,导致正常细胞中病毒复制减弱。工程病毒选择性地在肿瘤细胞中复制并导致肿瘤细胞裂解,释放肿瘤和病毒相关抗原并刺激抗肿瘤免疫。 • MAST 研究是一项开放标签、剂量递增、多中心 I 期研究,评估 CF33-hNIS 肿瘤内 (IT) 或静脉内 (IV) 给药的安全性,无论是作为单一疗法还是与派姆单抗联合用于转移性或晚期实体瘤患者。方法研究设计 MAST 研究正在评估 CF33-hNIS 单独或与帕博利珠单抗联合通过 IT 或 IV 给药的安全性,适用于既往接受过 ≥ 2 种治疗方案的晚期或转移性实体瘤患者(NCT05346484)。CF33-hNIS 在 C1D1 和 C1D8 以 21 天为一个周期给药,之后每个周期的 D1 给药。联合组的帕博利珠单抗从 C2D1 开始,每三周给药一次。该研究分为两部分。第 1 部分遵循 3+3 剂量递增方案,与每种 CF33- hNIS 给药途径(IT 和 IV)和每种治疗方案(单一疗法和联合疗法)无关,CF33-hNIS 剂量水平最多可达 7 个,范围从 8.6x10 5 至 3.0x10 9 PFU
帕金森氏病是一种复杂的女性神经神经疾病,会导致压倒性黑核的多巴多神经系统丧失。 div>黑核并不是唯一受该疾病影响的大脑区域,而不是第一个。 div>现代和高级研究表明,这种疾病不仅影响中枢神经系统。 div>实际上,您将在自我激烈的情况下beal我 - alpha,统治者和系统沉积的效果以及在神经系统之外羞辱的系统,这会影响患者生活的质量。 div>在消化系统中,被认为很难吞咽,便秘和小肠中细菌的繁殖,这被患者中的几个常见病例夸大了。 div>除了在案件附近的附近,包括皮脂和粉红色炎症,皮肤癌等。 div>最后,假系统的凹痕(例如触摸和气味的减少)与异常有关。 div>需要额外的高质量研究来开发
微生物组成和多样性的不平衡,有利于致病性微生物,结合失去有益的肠道微生物群的损失是由于年龄,饮食,饮食,抗菌剂给药,其他潜在的疾病>等因素。益生菌因其通过刺激土著肠道菌群,增强宿主对感染的免疫力,帮助消化和执行其他各种其他功能而改善健康的能力而闻名。同时,这些微生物产生的代谢产物称为生物后,其中包括细菌素,乳酸和过氧化氢等化合物,有助于抑制广泛的致病细菌。本评论介绍了在管理和治疗各种人类疾病中使用益生菌的更新,包括在19 Covid-19感染期间或之后可能出现的并发症。
1 伊朗德黑兰沙希德·贝赫什提医科大学胃肠病学和肝病研究所胃肠道疾病基础和分子流行病学研究中心,2 伊朗德黑兰塔比亚特·莫达雷斯大学生物科学学院分子遗传学系,3 伊朗德黑兰沙希德·贝赫什提医科大学胃肠病学和肝病研究所胃肠病学和肝病研究中心,4 意大利卡塞塔坎帕尼亚“路易吉·万维泰利”大学环境、生物和制药科学与技术系 (DiSTABiF),5 意大利那不勒斯国立研究委员会 (CNR) 遗传学和生物物理研究所 (IGB) “阿德里亚诺·布扎蒂-特拉韦尔索”,6 生殖生物医学研究遗传学系伊朗德黑兰 ACECR 鲁瓦扬生殖生物医学研究所中心
。(b)原子力显微镜图像显示了复杂的粘蛋白聚合网络的组织。(c)质谱数据显示,MUC2和MUC5AC是在源自肠细胞的人类粘液中鉴定出的前两种丰富的蛋白质。其他确定的蛋白质有助于复杂的糖基化,先天免疫/抗微生物因子和宿主修复/稳态。(d)粘蛋白的相互作用图和糖化酶的糖酶的酶图。(e)与外体粘液刮擦和先前发布的数据相比,Altis样品中的大量流变数据用于基准粘液浓度和复杂的粘度。(f)宏观流变研究确定了4个单个批次的储存模量(G')和损耗模量(G),加上合并的Altis粘液
在孵育的前10天内暴露于CO 2的浓度增加可能会对鸟类心脏和呼吸器官的发展产生影响。此外,育种时代可以影响孵化性能。这项研究旨在研究孵育的前10天,在孵化的前10天暴露于增加的CO 2的影响对胚胎和小鸡消化系统的形态生理发展的影响,来自31和41周的肉鸡育种者。A total of 860 fertile eggs from the Cobb strain were distributed in a completely randomized design, in a 2 x 2 factorial arrangement, with 2 different gaseous environments (Control (C) – no increase in CO 2 concentration and, Hypercapnia (CO 2 ) – a gradual increase in CO 2 concentration until reaching 1% on the 10th day) and 2 different broiler breeder ages (31 and 41 weeks).一半的鸡蛋是从31周龄的育种者那里获得的,另一半是从41周的繁殖者那里获得的。与对照组相比,在1%CO 2的大气中孵育导致胚胎的绒毛,空肠和回肠的绒毛高度升高,同一段中绒毛密度的降低。来自41周龄的肉鸡育种者的小鸡在伙伴后第1天,在十二指肠,空肠和回肠的绒毛高度上显示出较高的绒毛高度,而在7天时,绒毛密度较低。得出的结论是,在高碳酸盐条件下肥沃的卵的孵育可能会对胚胎和后雏鸡的小肠产生积极影响。
甲基化和ncRNA作为表观遗传修饰的两个重要调控因子,其异常表达在肿瘤中已被广泛证实。二者之间复杂的相互作用是胃肠道肿瘤(包括食管癌、胃癌、结直肠癌、肝癌和胰腺癌)恶性表型、预后不良和耐药性形成的关键。因此,本文对胃肠道肿瘤中ncRNA与甲基化修饰的相互关系过程进行了综述,包括甲基化酶调控ncRNA的具体机制、ncRNA调控甲基化修饰的分子机制以及ncRNA与甲基化修饰相互作用与肿瘤临床特征的相关性,并讨论了ncRNA与甲基化修饰在临床诊断和治疗中的潜在价值。