研究人员现在正在重新调整他们的努力,并寻求更好地了解阿尔茨海默氏病开始时发生的细胞机制。此信息至关重要,因为它将有助于建立潜在的治疗目标。在阿尔茨海默氏病发展的早期,大脑在海马中产生新神经元的能力逐渐逐渐丧失,这对于学习和记忆很重要。也存在产生一种称为乙酰胆碱的神经化学的细胞变性,对认知功能至关重要。Jhaveri博士将研究这两个细胞过程是如何链接的,认知功能如何改变了,以及是否可以通过刺激可以增强新神经元产生的特定受体来逆转它们。
目的:本研究旨在评估在早期阿尔茨海默病 (AD) 中,通过对楔前叶施加伽马频率的经颅交流电刺激 (γ-tACS) 是否能改善情景记忆并通过调节脑节律来调节胆碱能传递。方法:在这项随机、双盲、假对照、交叉研究中,60 名 AD 患者接受了临床和神经生理学评估,包括在使用针对楔前叶的 γ-tACS 或假 tACS 治疗前后 60 分钟的情景记忆和胆碱能传递评估。在 10 名患者的子集中,进行了 EEG 分析和电场分布的个体化建模。评估了 γ-tACS 疗效的预测因素。结果:我们观察到,在 γ-tACS 后,Rey 听觉言语学习 (RAVL) 测试的即时回忆 (p < 0.001) 和延迟回忆分数 (p < 0.001) 有显著提高,而在假性 tACS 后没有。在 γ-tACS 后,面孔-姓名联想分数有所提高 (p < 0.001),但在假性 tACS 后没有。短潜伏期传入抑制(胆碱能传递的间接测量)仅在 γ-tACS 后增加 (p < 0.001)。ApoE 基因型和基线认知障碍是 γ-tACS 反应的最佳预测因素。临床改善与后部区域伽马频率的增加以及楔前叶中预测的电场分布量相关。
在将抗胆碱能负担确定为 QUM 的一个重要问题后,NPS MedicineWise 制定了“抗胆碱能负担:老年人的意外后果”项目,旨在促进有效且安全地使用导致抗胆碱能负担的药物,并改善 65 岁以上人群的健康状况。该项目由澳大利亚政府卫生部资助。
抽象的神经元细胞命运决定因素通过控制基因表达来调节神经元形态和突触连通性来确定神经元的身份。然而,尚不清楚神经元细胞命运决定因素是否具有突触模式形成的有丝分裂功能。在这里,我们在秀丽隐杆线虫的胆碱能运动神经元的瓷砖突触模式中确定了UNC-4同源蛋白及其Corepressor UNC-37/ Groucho的新作用。我们表明,在神经发生过程中不需要UNC-4,而是在有丝分裂后神经元中需要进行适当的突触模式。相比之下,在发育后和有丝分裂后神经元中都需要UNC-37。BAR-1/ B-蛋白突变抑制了UNC-4突变体的突触平铺缺陷,这对CEH-12/ HB9的表达进行了积极调节。异位CEH-12表达部分是UNC-4和UNC-37突变体的突触缺陷的基础。我们的结果揭示了神经元细胞命运决定因素在突触模式形成中通过抑制规范Wnt信号通路的新颖新颖的作用。
60岁及以上的成年人目前使用至少一种处方强抗胆碱能,并获得初级保健。试验计划总共招募700名参与者,在1:1中随机分配与两个研究臂的比例。参与者将拥有大脑安全应用程序(干预臂)或注意力控制药物清单应用程序(控制臂),该应用程序加载到智能手机(已提供的研究或个人设备)上。所有参与者将被遵循12个月,并将在基线,6个月和12个月的基线收集数据,并由失明的结果评估员收集。该研究的主要结果是用药物处方电子记录计算出的总标准每日剂量(TSDD)测量的抗胆碱能暴露。该研究的次要结果是认知功能和与健康相关的生活质量。
抗精神病药诱导的锥体外症状(EP)可以作为帕金森氏症特征,akathisia和/或dystonic运动。1-3虽然通常与第一代,高功率,多巴胺-2(D2)受体拮抗剂有关,但EPS也已知一些新的抗精神病药物发生。4 EP被认为是源自D2受体在TAL途径中的拮抗作用,导致抑制性DOPA Minergic和兴奋性胆碱能神经传递的失衡。5抗胆碱能药物(ACM),该抗胰岛素受体(例如苯甲酰氨酸和三乙二苯基)通过恢复这种神经递质失衡而批准了FDA批准用于帕金森氏症和减轻EPS的FDA批准。6 ACM与不良反应的星座相结合,包括口干,便秘,视力模糊,梅里(Mem Ory),尿位率和心动过速。6-9这些系统性不良反应以及ACM对严重精神疾病(SMI)患者的预先征收药物负担(SMI)的贡献,可以显着影响患者的生活质量,导致治疗不遵守治疗,否则可以撤消临床增长。10
DNA聚合酶通过在细胞分裂期间将遗传信息从一代转移到另一代,在生物学中起着核心作用。利用这些酶在实验室中的力量促进了涉及DNA的合成,扩增和测序的生物医学应用的增加。然而,大多数天然发生的DNA聚合酶所表现出的高底物特异性通常无法在需要修改的底物的实际应用中使用。超越天然遗传聚合物需要复杂的酶工程技术,这些技术可用于指导通过量身定制的活性发挥作用的工程聚合酶的演化。这种努力有望通过具有新的物理化学特性的合成,复制和演变来使合成生物学中的新兴应用驱动合成生物学的新兴应用。
1 IRCCS Fondazione Santa Lucia,00143 罗马,意大利;eugenia.landolfo@uniroma1.it(EL);davide.decandia91@gmail.com(DD);a.nobili@hsantalucia.it(AN);mt.viscomi@hsantalucia.it(MTV);livia.labarbera@gmail.com(LLB);p.debartolo@unimarconi.it(PDB);m.damelio@hsantalucia.it(MD);laura.petrosini@uniroma1.it(LP)2 罗马大学“Sapienza”心理学系,00185 罗马,意大利;stefano.sacchetti@uniroma1.it(SS); annacarmencurci@gmail.com (AC) 3 意大利罗马市“Campus Biomedico”大学医学和外科科学系,邮编 00128 4 意大利罗马市天主教圣心大学生命科学系和公共卫生组织学与胚胎学专业,邮编 00168 5 意大利罗马市古列尔莫·马可尼大学人文科学系,邮编 00193 6 意大利罗马市 CNR 生物化学和细胞生物学研究所,邮编 00015 蒙特罗通多;stefano.fariolivecchioli@cnr.it * 通讯地址:debora_cutuli@yahoo.it;电话:+ 39-06501703077 † 行为神经科学博士课程。
摘要 乙酰胆碱信号传导对于认知功能至关重要,可抑制炎症。为了维持体内平衡,胆碱能信号传导受到蛋白质和非编码微小 RNA(“CholinomiR”)的多层次和双向调节。CholinomiR 通过靶向主要胆碱能转录物(包括乙酰胆碱水解酶乙酰胆碱酯酶 (AChE))来协调胆碱能信号的认知和炎症方面。值得注意的是,AChE 抑制剂是目前唯一获准治疗阿尔茨海默病患者的药物。由于胆碱能信号传导可抑制阿尔茨海默病固有的神经炎症,因此改变 AChE 特性及其对抑制剂和/或 CholinomiR 调节的敏感性的基因组变化可能会影响炎症小体成分(如 NLRP3)的水平和特性。这就需要基于基因组的医学方法,该方法基于参与胆碱能信号传导的基因中编码和非编码单核苷酸多态性 (SNP) 的基因分型。