哺乳动物细胞基因组中DNA甲基化的形成,遗传和去除是由两个酶 - DNA甲基转移酶(DNMTS)和十个时期转运蛋白(TETS)的两个家族的调节。dnmts生成并维持5-甲基胞嘧啶(5MC)的遗传,这是由TET酶靶向的底物,用于转化为5-羟基甲基胞嘧啶(5HMC)及其下游氧化衍生物。DNMT和TET的活性取决于微量营养素和代谢产物副因素的可用性,包括必需的植物,氨基酸和微量金属,突出显示如何通过代谢和营养扰动如何直接增强,抑制或重塑DNA甲基化水平。在胚胎发育,谱系规范和维持体细胞功能的过程中需要动态变化,可以根据必需微量营养素的影响来进行细胞功能。随着年龄的增长,DNA甲基化和羟甲基水平在图案上漂移,导致表观遗传失调和基因组不稳定,这是多种疾病在内的多种疾病的形成和进展。了解如何通过微量营养素调节DNA甲基化将对维持衰老时正常组织功能的维持以及预防和治疗疾病以改善健康和寿命具有重要意义。
非小细胞肺癌 (NSCLC) 是全球癌症相关发病率和死亡率的主要原因之一。需要新的治疗和药物再利用策略。胞嘧啶阿糖苷 (AraC) 是一种 S 期抑制剂,历史上用于治疗白血病。以前,AraC 并未被研究作为 NSCLC 的治疗选择。我们探索了一种针对 S 期和线粒体途径的新型体外辅助治疗概念。描述了一种合成途径,用于生成带有唑、二唑和三唑部分的新型线粒体损伤性 N-(4-氯苯基)-γ-氨基酸衍生物。对所得化合物在已描述的 A549 细胞上的抗癌活性进行了评估。五种化合物表现出与胞嘧啶阿糖苷 (AraC) 相当的令人信服的抗癌活性。最有前景的化合物 7g (IC 50 = 38.38 µ M) 含有 3,4-二氯苯基部分,能够诱导线粒体损伤,导致显著 (p < 0.05) ROS 产生和 ATP 合成抑制。与 AraC 和 7g 单一疗法或 UC 相比,7g 与 AraC 协同作用并显著降低 A549 活力。AraC 与 7g 联合使用后对 A549 活力的细胞毒性作用与阿霉素单一疗法相似。这些结果表明,7g 可以作为增强标准化疗药物活性的辅助药物进行探索。需要进一步研究以更好地了解 N-(4-氯苯基)-γ-氨基酸的安全性、有效性和精确的细胞靶点。
图 4:使用多个不同活性空间(参见计算细节)的 ( 1 n O π ∗ / 1 ππ ∗ ) CI 的 P 和 B 参数,a) 胞嘧啶、b) 尿嘧啶和 c) 胸腺嘧啶。每个子面板中最大的 (14,10) 参考活性空间在图中标出,其相关符号在中心标有黑点。所有优化圆锥交叉点的叠加几何图形以插图形式提供,其中具有“边界”分类的结构(在图中用方块标记)以不同的颜色突出显示。
1。嘌呤碱基组(嘌呤)为太极时(胸腺素; T)和胞嘧啶; c)2。pyimidine碱基组包括腺嘌呤; A)和鸟嘌呤(G)。 Dee Syboss和磷酸盐中包括这种硝基 - 中心贝司化合物。这是由低音鲍兰与基础pyimidine(A-T,G-C)结合的一对线(图1)。所有4个核苷酸电缆的扩展都可用于分离生物可以不同的生物,使每个生物体中的遗传多样性和特异性。 div>
crispr-cas9对于包括模型植物Phantcomitrium patens在内的植物中的基因组编辑非常有价值。然而,使用天然Cas9核酸酶进行的大多数编辑事件对应于小插入和缺失,这一事实是一个限制。CRISPR-CAS9碱基编辑器使真核基因组中的单核苷酸的靶向突变,因此克服了这一限制。在这里,我们报告了两个可编程基础编辑系统,以在p中诱导精确的胞嘧啶或腺嘌呤转化。patens。使用胞嘧啶或腺嘌呤碱基编辑器,可以使用高达55%的效率来实现位点特异性的单基碱基突变,而无需脱离靶向突变。使用APT基因作为编辑的记者,我们可以证明两个基本编辑器都可以在单纯形或多重编辑中使用,从而可以生产具有多种氨基酸变化的蛋白质变体。最后,我们设置了一个共同编辑的选择系统,命名为APRT的修改以报告基因靶向(SMART),最多可在p中进行效率高达90%的效率位点基础编辑。patens。这两个基本编辑者将促进p中的基因功能分析。patens,可以通过单个SGRNA碱基编辑或使用多个SGRNA碱基编辑来生产随机诱变的变体来通过单个SGRNA碱基编辑或用于给定基因的植物学演化进行定位编辑。
系统已被探索作为有效的选择剂来消除未编辑的细胞,从而大大简化了细菌中的基因操作过程。9尽管基于 CRISPR/Cas 的基因组编辑方法简单且高效,但它们仍然依赖于细菌中的 HR 来实现精确的基因操作,因此难以在某些缺乏强大 HR 系统的细菌(如结核分枝杆菌)中建立。最近,脱氨酶介导的碱基编辑系统的发展为生物学中的精确基因操作提供了新策略。10 – 12碱基编辑系统使用脱氨反应和随后的 DNA 复制过程直接转换目标碱基,而不是前面提到的基于 CRISPR/Cas 的基因组编辑方法中所利用的 HR。已经建立了两种主要类型的碱基编辑系统:胞嘧啶碱基编辑器(CBE)10,11 和腺嘌呤碱基编辑器(ABE)。 12,13 CBE 已广泛用于各种生物体(包括真核生物 10,11,14 - 17 和一些细菌物种 17 - 22)中的可编程胞嘧啶到胸腺嘧啶的转化,而 ABE 主要在真核生物中建立,例如哺乳动物细胞 12,23 和植物 24,25,用于精确的腺嘌呤到鸟嘌呤的转化。最近,在链霉菌中开发了一种名为 CRISPR-aBEST 的 ABE 系统。13 此外,还开发了可编程的腺苷到肌苷和胞苷到尿苷的 RNA 编辑器。26,27
所有这些疾病的特征都是在称为胞嘧啶-腺嘌呤-鸟嘌呤 (CAG) 三核苷酸重复的单元中发生特定的基因异常,导致产生具有扩展的多聚谷氨酰胺束的蛋白质。26 产生的蛋白质是有缺陷的,受影响的蛋白质在 polyQ 疾病中在功能和细胞内位置方面有所不同。此外,每种 polyQ 疾病都会影响不同的大脑区域和神经元细胞亚型。26 这些基因异常主要影响中枢神经系统,并与进行性退化、功能障碍和特定神经元群体的死亡有关。21,26,27,38,39
脱氧核糖核酸 (DNA) 的化学成分是通过共价键连接在一起的核苷酸,形成长链。这些核苷酸由一种称为脱氧核糖的 5 碳糖、一个磷酸基团和一个含氮的含氮碱基组成。含氮碱基有四种:腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶。核苷酸与一个分子的糖和另一个分子的磷酸共价结合。学生将描述和标记 DNA 的结构,包括核苷酸的组成和含氮碱基的配对。他们还将了解 DNA 分子的双螺旋形状以及磷酸基团和糖基团在其形成中的作用。
胸苷酸合酶 (TS) 已在多种生物体中得到鉴定,并且是癌症化疗中已证实的靶点 (25)。TS 应该是白色念珠菌(一种常见的真菌病原体)的良好化疗靶点,因为该酶的产物 dTMP 只能在酵母中从头合成;酵母缺乏胸苷激酶,并且胸腺嘧啶、胸苷和 dTMP 无法渗透 (6)。有效抑制酵母中的 TS 会导致死亡,因为这些生物体无法产生自己的 dTMP 或从环境中获取它。5-氟胞嘧啶可在体外和体内抑制白色念珠菌和几种其他真菌 (3)。此外,用 5-氟胞嘧啶 (9) 处理白色念珠菌会导致 5-氟-dUMP 积累并抑制 TS,因此表明该酶是真菌的化疗靶点。从体外靶酶表征中获得的信息有助于设计新的潜在化疗剂。大量纯酶的可用性促进了此类研究。由于白色念珠菌培养物中存在低水平的 TS,因此在大肠杆菌中克隆和过表达了白色念珠菌 TS。我们报告了通过功能补充缺乏 TS 的酿酒酵母菌株分离白色念珠菌 TS 基因。该基因的序列包括基因 5' 端约 400 个碱基对 (bp) 的 DNA 和一段较短的 3' 侧翼区,并使用 T7 表达载体在大肠杆菌中表达。制备了来自白色念珠菌和大肠杆菌的纯化酶,并检查了其特性,以确保在大肠杆菌中表达的克隆 TS 酶与白色念珠菌的天然 TS 酶相同。