常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因应用或使用本文所述任何产品而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
时间分辨电子显微镜引起了人们的极大兴趣,可用于研究空间分辨率低于光学衍射极限的超快分子、表面和体积动力学[1–8]。为了实现最佳成像条件,需要精确控制自由电子的发射和传播,这些控制现在也推动了电子-物质相互作用实验[9–14]和显微镜设计[15–18]的进步。对于任何电子显微镜,由于稳定性、相干性以及空间、时间和光谱分辨率之间的权衡,电子发射器和发射机制的选择限制了可实现的成像条件。包含大量电子的短脉冲可用于减少显微镜的曝光时间,并且是生成不可逆动力学的单次图像所必需的,这需要每个脉冲多达 10 9 个电子,但库仑相互作用会展宽大电流脉冲的空间和能量分布,增加像差并降低分辨率[5]。在较长的脉冲中,这些效应会被抑制,大量电子可以在纳秒脉冲包络内传播,同时仍能保持研究相变、反应动力学和蛋白质折叠等过程所需的时间分辨率[19–22]。此外,纳秒脉冲非常适合依赖快速电子门控的仪器,如多通透射电子显微镜[23–25]。这些脉冲可以通过使用光束消隐器及时过滤电子束来产生,也可以通过短激光脉冲触发发射[26]。消隐器通常与连续电子源集成在一起,可以模糊或位移电子束[27]。或者,激光触发需要对电子源进行光学访问,但会引入不同的自由度来控制光发射脉冲的电流、时间持续时间和能量扩展。
SBTB10300CT TO-263 50 件 / 管或 800 件 / 卷带 SBTB10300CT 最大额定值(@TA =25 ℃,除非另有说明)
图 1:(a) 具有铁磁触点的 h-BN 封装单层 WSe 2 隧道器件示意图 (b) 器件的光学显微镜图像。矩形部分(红色)表示封装结构;定义触点之前的封装样品的光学图像。(c) (顶部) 单层 WSe 2 相对于直接接触材料铂的能级图;(底部) 在有限偏压和超阈值栅极电压下的正向偏压条件下的漏源电流示意图。请注意,在我们的器件中,多数电荷载流子是空穴。围绕铁磁触点弯曲的能带未缩放。(d) 4.7K 下单层 WSe 2 的光致发光 (PL) 光谱仪(X o 表示中性激子峰);(插图)同一单层 WSe 2 的室温 PL 光谱显示单层中集体激发的单个特征峰在 1.67 eV 处。
意大利微电子与微系统研究所 (CNR_IMM),第 VIII 大街,5 号工业区,95121 卡塔尼亚,意大利摘要研究了在重掺杂(ND >10 19 cm -3 )n 型磷注入碳化硅 (4H-SiC) 上形成的 Ni 肖特基势垒的电行为,重点研究了正向和反向偏压下的电流传输机制。肖特基二极管的正向电流-电压特性表明,主要的电流传输是热电子场发射机制。另一方面,反向偏压特性不能用独特的机制来描述。事实上,在中等反向偏压下,注入引起的损伤是导致漏电流温度升高的原因,而随着偏压的增加,纯场发射机制趋近于。讨论了重掺杂层上的金属/4H-SiC 接触在实际器件中的潜在应用。关键词:4H-SiC,电气特性,电流传输,肖特基器件
摘要:二硫化钼(MoS 2 )因其较大的带隙、良好的机械韧性和稳定的物理性能而受到研究者的广泛关注,成为下一代光电器件的理想材料。但较大的肖特基势垒高度( Φ B )和接触电阻是阻碍大功率 MoS 2 晶体管制备的障碍。详细研究了具有两种不同接触结构的 MoS 2 晶体管的电子传输特性,包括铜(Cu)金属-MoS 2 通道和铜(Cu)金属-TiO 2 -MoS 2 通道。通过调整金属和 MoS 2 之间的 TiO 2 夹层的厚度来优化接触。具有 1.5 nm 厚 TiO 2 层的金属-夹层-半导体(MIS)结构具有较小的肖特基势垒,为 22 meV。结果为设计 MIS 接触和界面以改善晶体管特性提供了参考。
如今,围绕库仑势垒对聚变反应和准弹性散射的研究引起了广泛关注。通过这类重离子碰撞可以研究核-核相互作用势和核结构性质 [ 1 ]。碰撞伙伴的核结构性质可显著影响亚势垒域中的聚变产额。聚变对中不同内在自由度的参与降低了参与者之间的聚变势垒,并导致与一维势垒穿透模型 (BPM) 的预测相比大得多的聚变结果。文献中已充分证实,聚变伙伴的相对运动和内在通道之间的耦合会导致单个聚变势垒分裂为不同高度和重量的势垒分布。这被称为聚变势垒分布,聚变势垒分布的形状对聚变过程中涉及的耦合类型非常敏感。聚变势垒分布的概念由 Rowley 等人 [2] 提出,可通过对 𝐸 𝑐.𝑚. 𝜎 𝑓 对质心能量取二阶导数获得。此外,大角度准弹性散射函数可以产生与聚变势垒分布非常相似的势垒分布,并且聚变势垒分布和准弹性势垒分布的形状基本相同。准弹性势垒分布可通过对 𝐸 𝑐.𝑚. 的准弹性散射截面取一阶导数获得。众所周知,聚变过程可以用穿透概率来解释,基于量子力学隧穿,而准弹性散射与反射概率有关。重离子准
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
使用 Gamow 因子 θ ( k ) 重新进行了 Winful 的分析,以便进行推广。第三,对高场电子发射特性势垒重复 Gamow 分析。有几个候选势垒:(i) 镜像电荷或肖特基-诺德海姆 (SN) 势垒[20]:它描述金属 [21] 和半导体 [22] 的场发射,具有半解析的 Gamow 因子 θ ( k ),但透射 t ( k ) 和反射 r ( k ) 系数必须通过数值计算;(ii) Eckart 势垒[23]:它是非对称势垒,对于它,t(k) 和 r(k) 是解析的,但 Gamow 因子 θ ( k ) 必须通过数值计算; (iii) 三角势垒或 Fowler-Nordheim (FN) 势垒 [21] 用于场发射:它忽略了镜像电荷效应,但 t(k)、r(k) 和 θ(k) 都是完全解析的。因此,只有所选的三角势垒 (iii) 才是高场条件下场发射的简单、纯解析表示(并且是隧道波力学最具代表性的例子 [24, 25])。因此,FN 形式 [26–28] 用于开发和分析停留时间 τ d 和自干扰时间 τ i。